summaryrefslogtreecommitdiff
path: root/sys/kern/kern_sched.c
blob: 1100f4a52450fc9991c42de21e54223c2281c3fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
 * Copyright (c) 2023-2024 Ian Marco Moffett and the Osmora Team.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Hyra nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/sched.h>
#include <sys/schedvar.h>
#include <sys/machdep.h>
#include <sys/loader.h>
#include <sys/errno.h>
#include <sys/cdefs.h>
#include <sys/filedesc.h>
#include <sys/timer.h>
#include <sys/panic.h>
#include <sys/signal.h>
#include <fs/initramfs.h>
#include <vm/dynalloc.h>
#include <vm/physseg.h>
#include <vm/map.h>
#include <vm/pmap.h>
#include <string.h>
#include <assert.h>

/*
 * Thread ready queues - all threads ready to be
 * scheduled should be added to the toplevel queue.
 */
static struct sched_queue qlist[SCHED_NQUEUE];

/*
 * Global scheduler state.
 */
static size_t nthread = 0;
static schedpolicy_t policy = SCHED_POLICY_MLFQ;

/*
 * Thread queue lock - all operations to `qlist'
 * must be done with this lock acquired.
 *
 * This lock is aligned on a cache line boundary to ensure
 * it has its own cache line to reduce contention. This is
 * because it is constantly acquired and released on every
 * processor.
 */
__cacheline_aligned
static struct spinlock tdq_lock = {0};

/*
 * Lower thread priority.
 */
static inline void
td_pri_lower(struct proc *td)
{
    if (td->priority < (SCHED_NQUEUE - 1))
        ++td->priority;
}

/*
 * Raise thread priority.
 */
static inline void
td_pri_raise(struct proc *td)
{
    if (td->priority > 0)
        --td->priority;
}

/*
 * Called during preemption. We raise the priority
 * if the thread has been rested. If the thread has not
 * been rested, we lower its priority.
 */
static void
td_pri_update(struct proc *td)
{
    if (td->rested) {
        td->rested = 0;
        td_pri_raise(td);
        return;
    }

    td_pri_lower(td);
}

/*
 * Enqueue a thread into the scheduler.
 */
static void
sched_enqueue_td(struct proc *td)
{
    struct sched_queue *queue;

    spinlock_acquire(&tdq_lock);
    queue = &qlist[td->priority];

    TAILQ_INSERT_TAIL(&queue->q, td, link);
    spinlock_release(&tdq_lock);
}

/*
 * Dequeue a thread from a queue.
 */
static struct proc *
sched_dequeue_td(void)
{
    struct sched_queue *queue;
    struct proc *td = NULL;

    spinlock_acquire(&tdq_lock);

    /*
     * Try to pop a thread from a queue. We start at the
     * highest priority which is 0.
     */
    for (size_t i = 0; i < SCHED_NQUEUE; ++i) {
        queue = &qlist[i];

        if (!TAILQ_EMPTY(&queue->q)) {
            td = TAILQ_FIRST(&queue->q);
            TAILQ_REMOVE(&queue->q, td, link);
            break;
        }
    }

    spinlock_release(&tdq_lock);
    return td;
}

/*
 * Create a new thread stack.
 * sched_new_td() helper.
 */
static uintptr_t
sched_create_stack(bool is_user, struct exec_args args, struct proc *td)
{
    int status;
    uintptr_t stack;
    struct vm_range *stack_range;
    const vm_prot_t USERSTACK_PROT = PROT_WRITE | PROT_USER;

    stack_range = &td->addr_range[ADDR_RANGE_STACK];

    /*
     * Kernel stacks can be allocated with dynalloc() as they
     * are on the higher half.
     */
    if (!is_user) {
        stack = (uintptr_t)dynalloc(PROC_STACK_SIZE);
        stack_range->start = stack;
        stack_range->end = stack + PROC_STACK_SIZE;
        return loader_init_stack((void *)(stack + PROC_STACK_SIZE), args);
    }

    stack = vm_alloc_pageframe(PROC_STACK_PAGES);
    if (stack == 0) {
        return 0;
    }

    status = vm_map_create(args.vas, stack, stack, USERSTACK_PROT, PROC_STACK_SIZE);
    if (status != 0) {
        vm_free_pageframe(stack, PROC_STACK_PAGES);
        return 0;
    }

    stack_range->start = stack;
    stack_range->end = stack + PROC_STACK_SIZE;

    memset(USER_TO_KERN(stack), 0, PROC_STACK_SIZE);
    stack = loader_init_stack((void *)USER_TO_KERN(stack + PROC_STACK_SIZE), args);
    return stack;
}

/*
 * Create a new thread.
 *
 * @ip: Instruction pointer to start at.
 * @is_user: True for user program.
 * @exec_args: Common exec args.
 */
static int
sched_new_td(uintptr_t ip, bool is_user, struct exec_args args, struct vm_range *prog_range,
             struct proc **res)
{
    struct vm_range *exec_range;
    struct proc *td;
    struct trapframe *tf;
    uintptr_t stack;
    int retval = 0;

    td = dynalloc(sizeof(struct proc));
    tf = dynalloc(sizeof(struct trapframe));
    if (td == NULL || tf == NULL) {
        retval = -ENOMEM;
        goto done;
    }

    /* Keep them in a known state */
    memset(td, 0, sizeof(*td));
    memset(tf, 0, sizeof(*tf));

    /* Try to create a stack */
    stack = sched_create_stack(is_user, args, td);
    if (stack == 0) {
        retval = -ENOMEM;
        goto done;
    }

    /* Setup initial thread state */
    td->pid = ++nthread;
    td->tf = tf;
    td->addrsp = args.vas;
    td->is_user = is_user;
    processor_init_pcb(td);

    /* Setup each mapping table */
    for (size_t i = 0; i < MTAB_ENTRIES; ++i) {
        TAILQ_INIT(&td->mapspace.mtab[i]);
    }

    /* Setup standard file descriptors */
    __assert(fd_alloc(td, NULL) == 0);  /* STDIN */
    __assert(fd_alloc(td, NULL) == 0);  /* STDOUT */
    __assert(fd_alloc(td, NULL) == 0);  /* STDERR */

    exec_range = &td->addr_range[ADDR_RANGE_EXEC];
    memcpy(exec_range, prog_range, sizeof(struct vm_range));

    /* Init the trapframe */
    if (!is_user) {
        init_frame(tf, ip, stack);
    } else {
        init_frame_user(tf, ip, KERN_TO_USER(stack));
    }
done:
    if (retval != 0 && td != NULL)
        dynfree(td);
    if (retval != 0 && tf != NULL)
        dynfree(td);
    if (retval == 0 && res != NULL)
        *res = td;

    return retval;
}

/*
 * Perform timer oneshot
 *
 * @now: True for shortest timeslice.
 */
static inline void
sched_oneshot(bool now)
{
    struct timer timer;
    size_t usec = (now) ? SHORT_TIMESLICE_USEC : DEFAULT_TIMESLICE_USEC;
    tmrr_status_t tmr_status;

    tmr_status = req_timer(TIMER_SCHED, &timer);
    __assert(tmr_status == TMRR_SUCCESS);

    timer.oneshot_us(usec);
}

/*
 * Enter the schedulera and wait until
 * preemption.
 */
void
sched_enter(void)
{
    sched_oneshot(false);

    for (;;) {
        hint_spinwait();
    }
}

/*
 * Initialize all of the queues.
 */
static void
sched_init_queues(void)
{
    for (size_t i = 0; i < SCHED_NQUEUE; ++i) {
        TAILQ_INIT(&qlist[i].q);
    }
}

/*
 * Load the first thread (init)
 */
static void
sched_load_init(void)
{
    struct exec_args args;
    struct proc *init;
    struct auxval *auxvp = &args.auxv;
    struct vm_range init_range;
    int tmp;

    char *argv[] = {"/usr/sbin/init", NULL};
    char *envp[] = {NULL};
    const char *init_bin;

    if ((init_bin = initramfs_open("/usr/sbin/init")) == NULL)
        panic("Could not open /usr/sbin/init\n");

    args.vas = pmap_create_vas(vm_get_ctx());
    args.argp = argv;
    args.envp = envp;

    tmp = loader_load(args.vas, init_bin, auxvp, 0, NULL, &init_range);
    if (tmp != 0)
        panic("Failed to load init\n");

    if (sched_new_td(auxvp->at_entry, true, args, &init_range, &init) != 0)
        panic("Failed to create init thread\n");

    sched_enqueue_td(init);
}

static void
sched_destroy_td(struct proc *td)
{
    struct vm_range *stack_range;
    struct vm_range *exec_range;
    vm_mapq_t *mapq;

    processor_free_pcb(td);
    stack_range = &td->addr_range[ADDR_RANGE_STACK];
    exec_range = &td->addr_range[ADDR_RANGE_EXEC];

    /*
     * User thread's have their stack allocated
     * with vm_alloc_pageframe() and kernel thread's
     * have their stacks allocated with dynalloc()
     */
    if (td->is_user) {
        vm_free_pageframe(stack_range->start, PROC_STACK_PAGES);
    } else {
        dynfree((void *)stack_range->start);
    }

    for (size_t i = 0; i < MTAB_ENTRIES; ++i) {
        mapq = &td->mapspace.mtab[i];
        vm_free_mapq(mapq);
    }

    for (size_t i = 0; i < PROC_MAX_FDS; ++i) {
        fd_close_fdnum(td, i);
    }

    loader_unload(td->addrsp, exec_range);
    pmap_free_vas(vm_get_ctx(), td->addrsp);
    dynfree(td);
}

/*
 * Cause an early preemption and lets
 * the next thread run.
 */
void
sched_rest(void)
{
    struct proc *td = this_td();

    if (td == NULL)
        return;

    td->rested = 1;
    sched_oneshot(true);
}

void
sched_exit(void)
{
    struct proc *td = this_td();
    struct vas kvas = vm_get_kvas();

    spinlock_acquire(&tdq_lock);
    intr_mask();

    /* Switch to kernel VAS and destroy td */
    pmap_switch_vas(vm_get_ctx(), kvas);
    sched_destroy_td(td);

    spinlock_release(&tdq_lock);
    intr_unmask();
    sched_enter();
}

/*
 * Get the current running thread.
 */
struct proc *
this_td(void)
{
    struct sched_state *state;
    struct cpu_info *ci;

    ci = this_cpu();
    state = &ci->sched_state;
    return state->td;
}

/*
 * Thread context switch routine
 *
 * Handles the transition from the currently running
 * thread to the next thread.
 */
void
sched_context_switch(struct trapframe *tf)
{
    struct cpu_info *ci = this_cpu();
    struct sched_state *state = &ci->sched_state;
    struct proc *next_td, *td = state->td;

    if (td != NULL) {
        signal_handle(state->td);
    }

    /*
     * If a thread is currently running and our policy is
     * MLFQ, then we should update the thread's priority.
     */
    if (td != NULL && policy == SCHED_POLICY_MLFQ) {
        td_pri_update(td);
    }

    /* Don't preempt if we have no threads */
    if ((next_td = sched_dequeue_td()) == NULL) {
        sched_oneshot(false);
        return;
    }

    /*
     * If we have a thread currently running, then we should save
     * its current register state and re-enqueue it.
     */
    if (td != NULL) {
        memcpy(td->tf, tf, sizeof(struct trapframe));
        sched_enqueue_td(td);
    }

    /* Perform the switch */
    memcpy(tf, next_td->tf, sizeof(struct trapframe));
    processor_switch_to(td, next_td);

    state->td = next_td;
    pmap_switch_vas(vm_get_ctx(), next_td->addrsp);
    sched_oneshot(false);
}

uint64_t
sys_exit(struct syscall_args *args)
{
    sched_exit();
    __builtin_unreachable();
}

void
sched_init(void)
{
    sched_init_queues();
    sched_load_init();
}