1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/*
* Copyright (c) 2023-2024 Ian Marco Moffett and the Osmora Team.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Hyra nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/sched.h>
#include <sys/schedvar.h>
#include <sys/sched_state.h>
#include <sys/types.h>
#include <sys/timer.h>
#include <sys/cdefs.h>
#include <sys/spinlock.h>
#include <sys/loader.h>
#include <sys/panic.h>
#include <sys/machdep.h>
#include <sys/filedesc.h>
#include <sys/signal.h>
#include <fs/initramfs.h>
#include <vm/dynalloc.h>
#include <vm/physseg.h>
#include <vm/pmap.h>
#include <vm/map.h>
#include <vm/vm.h>
#include <assert.h>
#include <string.h>
#define STACK_PAGES 8
#define STACK_SIZE (STACK_PAGES*vm_get_page_size())
/*
* The PHYS_TO_VIRT/VIRT_TO_PHYS macros convert
* addresses to lower and higher half addresses.
* Userspace addresses are on the lower half,
* therefore, we can just wrap over these to
* keep things simple.
*
* XXX: TODO: This won't work when not identity mapping
* lowerhalf addresses. Once that is updated,
* get rid of this.
*/
#define USER_TO_KERN(user) PHYS_TO_VIRT(user)
#define KERN_TO_USER(kern) VIRT_TO_PHYS(kern)
/*
* Thread ready queue - all threads ready to be
* scheduled should be added to this queue.
*/
static TAILQ_HEAD(, proc) td_queue;
static size_t nthread = 0;
/*
* Thread queue lock - all operations to `td_queue'
* must be done with this lock acquired.
*/
static struct spinlock tdq_lock = {0};
static inline void
sched_oneshot(void)
{
struct timer timer;
tmrr_status_t tmr_status;
tmr_status = req_timer(TIMER_SCHED, &timer);
__assert(tmr_status == TMRR_SUCCESS);
timer.oneshot_us(DEFAULT_TIMESLICE_USEC);
}
/*
* Push a thread into the thread ready queue
* allowing it to be eventually dequeued
* and ran.
*/
static void
sched_enqueue_td(struct proc *td)
{
/* Sanity check */
if (td == NULL)
return;
spinlock_acquire(&tdq_lock);
td->pid = ++nthread;
TAILQ_INSERT_TAIL(&td_queue, td, link);
spinlock_release(&tdq_lock);
}
/*
* Dequeue the first thread in the thread ready
* queue.
*/
static struct proc *
sched_dequeue_td(void)
{
struct proc *td = NULL;
spinlock_acquire(&tdq_lock);
if (!TAILQ_EMPTY(&td_queue)) {
td = TAILQ_FIRST(&td_queue);
TAILQ_REMOVE(&td_queue, td, link);
}
spinlock_release(&tdq_lock);
return td;
}
/*
* Processor awaiting tasks to be assigned will be here spinning.
*/
__noreturn static void
sched_enter(void)
{
sched_oneshot();
for (;;) {
hint_spinwait();
}
}
static uintptr_t
sched_init_stack(void *stack_top, char *argvp[], char *envp[], struct auxval auxv)
{
uintptr_t *sp = stack_top;
uintptr_t old_sp = 0;
size_t argc, envc, len;
/* Copy strings */
old_sp = (uintptr_t)sp;
for (argc = 0; argvp[argc] != NULL; ++argc) {
len = strlen(argvp[argc]) + 1;
sp = (void *)((char *)sp - len);
memcpy((char *)sp, argvp[argc], len);
}
for (envc = 0; envp[envc] != NULL; ++envc) {
len = strlen(envp[envc]) + 1;
sp = (void *)((char *)sp - len);
memcpy((char *)sp, envp[envc], len);
}
/* Ensure the stack is aligned */
sp = (void *)__ALIGN_DOWN((uintptr_t)sp, 16);
if (((argc + envc + 1) & 1) != 0)
--sp;
AUXVAL(sp, AT_NULL, 0x0);
AUXVAL(sp, AT_SECURE, 0x0);
AUXVAL(sp, AT_ENTRY, auxv.at_entry);
AUXVAL(sp, AT_PHDR, auxv.at_phdr);
AUXVAL(sp, AT_PHNUM, auxv.at_phnum);
STACK_PUSH(sp, 0);
/* Copy envp pointers */
sp -= envc;
for (int i = 0; i < envc; ++i) {
len = strlen(envp[i]) + 1;
old_sp -= len;
sp[i] = KERN_TO_USER(old_sp);
}
/* Copy argvp pointers */
STACK_PUSH(sp, 0);
sp -= argc;
for (int i = 0; i < argc; ++i) {
len = strlen(argvp[i]) + 1;
old_sp -= len;
sp[i] = KERN_TO_USER(old_sp);
}
STACK_PUSH(sp, argc);
return (uintptr_t)sp;
}
static uintptr_t
sched_create_stack(struct vas vas, bool user, char *argvp[],
char *envp[], struct auxval auxv, struct proc *td)
{
int status;
uintptr_t stack;
const vm_prot_t USER_STACK_PROT = PROT_WRITE | PROT_USER;
struct vm_range *stack_range = &td->addr_range[ADDR_RANGE_STACK];
if (!user) {
stack = (uintptr_t)dynalloc(STACK_SIZE);
stack_range->start = (uintptr_t)stack;
stack_range->end = (uintptr_t)stack + STACK_SIZE;
return sched_init_stack((void *)(stack + STACK_SIZE), argvp, envp, auxv);
}
stack = vm_alloc_pageframe(STACK_PAGES);
stack_range->start = stack;
stack_range->end = stack + STACK_SIZE;
status = vm_map_create(vas, stack, stack, USER_STACK_PROT, STACK_SIZE);
if (status != 0) {
return 0;
}
memset(USER_TO_KERN(stack), 0, STACK_SIZE);
stack = sched_init_stack((void *)USER_TO_KERN(stack + STACK_SIZE), argvp, envp, auxv);
return stack;
}
static struct proc *
sched_create_td(uintptr_t rip, char *argvp[], char *envp[], struct auxval auxv,
struct vas vas, bool is_user, struct vm_range *prog_range)
{
struct proc *td;
struct vm_range *exec_range;
uintptr_t stack;
struct trapframe *tf;
tf = dynalloc(sizeof(struct trapframe));
if (tf == NULL) {
return NULL;
}
td = dynalloc(sizeof(struct proc));
if (td == NULL) {
/* TODO: Free stack */
dynfree(tf);
return NULL;
}
memset(td, 0, sizeof(struct proc));
stack = sched_create_stack(vas, is_user, argvp, envp, auxv, td);
if (stack == 0) {
dynfree(tf);
dynfree(td);
return NULL;
}
memset(tf, 0, sizeof(struct trapframe));
/* Setup process itself */
exec_range = &td->addr_range[ADDR_RANGE_EXEC];
td->pid = 0; /* Don't assign PID until enqueued */
td->cpu = NULL; /* Not yet assigned a core */
td->tf = tf;
td->addrsp = vas;
td->is_user = is_user;
for (size_t i = 0; i < MTAB_ENTRIES; ++i) {
/* Init the memory mapping table */
TAILQ_INIT(&td->mapspace.mtab[i]);
}
if (prog_range != NULL) {
memcpy(exec_range, prog_range, sizeof(struct vm_range));
}
processor_init_pcb(td);
/* Allocate standard file descriptors */
__assert(fd_alloc(td, NULL) == 0); /* STDIN */
__assert(fd_alloc(td, NULL) == 0); /* STDOUT */
__assert(fd_alloc(td, NULL) == 0); /* STDERR */
/* Setup trapframe */
if (!is_user) {
init_frame(tf, rip, (uintptr_t)stack);
} else {
init_frame_user(tf, rip, KERN_TO_USER(stack));
}
return td;
}
static void
sched_destroy_td(struct proc *td)
{
const struct vm_range *stack_range = &td->addr_range[ADDR_RANGE_STACK];
vm_mapq_t *mapq;
processor_free_pcb(td);
/*
* User stacks are allocated with vm_alloc_pageframe(),
* while kernel stacks are allocated with dynalloc().
* We want to check if we are a user program or kernel
* program to perform the proper deallocation method.
*/
if (td->is_user) {
vm_free_pageframe(stack_range->start, STACK_PAGES);
} else {
dynfree((void *)stack_range->start);
}
/* Close all of the file descriptors */
for (size_t i = 0; i < PROC_MAX_FDS; ++i) {
fd_close_fdnum(td, i);
}
for (size_t i = 0; i < MTAB_ENTRIES; ++i) {
mapq = &td->mapspace.mtab[i];
vm_free_mapq(mapq);
}
pmap_free_vas(vm_get_ctx(), td->addrsp);
dynfree(td);
}
void
sched_exit(void)
{
struct proc *td;
struct vas kvas = vm_get_kvas();
intr_mask();
td = this_td();
spinlock_acquire(&td->lock); /* Never release */
/* Switch back to the kernel address space and destroy ourself */
pmap_switch_vas(vm_get_ctx(), kvas);
sched_destroy_td(td);
intr_unmask();
sched_enter();
}
/*
* Get the current running thread.
*/
struct proc *
this_td(void)
{
struct sched_state *state;
struct cpu_info *ci;
ci = this_cpu();
state = &ci->sched_state;
return state->td;
}
/*
* Thread context switch routine
*/
void
sched_context_switch(struct trapframe *tf)
{
struct cpu_info *ci = this_cpu();
struct sched_state *state = &ci->sched_state;
struct proc *td, *next_td;
if (state->td != NULL) {
signal_handle(state->td);
}
/*
* If we have no threads, we should not
* preempt at all.
*/
if (nthread == 0 || (next_td = sched_dequeue_td()) == NULL) {
sched_oneshot();
return;
}
/*
* If we have a thread currently running and we are switching
* to another, we shall save our current register state
* by copying the trapframe.
*/
if (state->td != NULL) {
td = state->td;
memcpy(td->tf, tf, sizeof(struct trapframe));
}
/* Copy over the next thread's register state to us */
memcpy(tf, next_td->tf, sizeof(struct trapframe));
td = state->td;
state->td = next_td;
/* Re-enqueue the previous thread if it exists */
if (td != NULL) {
sched_enqueue_td(td);
}
/* Do architecture specific context switch logic */
processor_switch_to(td, next_td);
/* Done, switch out our vas and oneshot */
pmap_switch_vas(vm_get_ctx(), next_td->addrsp);
sched_oneshot();
}
void
sched_init(void)
{
struct proc *init;
struct vm_range init_range;
struct auxval auxv = {0};
struct vas vas = pmap_create_vas(vm_get_ctx());
const char *init_bin;
char *argv[] = {"/usr/sbin/init", NULL};
char *envp[] = {NULL};
TAILQ_INIT(&td_queue);
if ((init_bin = initramfs_open("/usr/sbin/init")) == NULL) {
panic("Could not open /usr/boot/init\n");
}
if (loader_load(vas, init_bin, &auxv, 0, NULL, &init_range) != 0) {
panic("Could not load init\n");
}
init = sched_create_td((uintptr_t)auxv.at_entry, argv, envp,
auxv, vas, true, &init_range);
if (init == NULL) {
panic("Failed to create thread for init\n");
}
sched_enqueue_td(init);
}
/*
* Setup scheduler related things and enqueue AP.
*/
void
sched_init_processor(struct cpu_info *ci)
{
struct sched_state *sched_state = &ci->sched_state;
(void)sched_state; /* TODO */
sched_enter();
__builtin_unreachable();
}
|