1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/*
* Copyright (c) 2023-2024 Ian Marco Moffett and the Osmora Team.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Hyra nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/mmio.h>
#include <dev/pci/pci.h>
#include <dev/pci/pciregs.h>
#include <machine/pio.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/idt.h>
/* Base address masks for BARs */
#define PCI_BAR_MEMMASK ~7
static inline uint32_t
pci_conf_addr(struct pci_device *dev, uint32_t offset)
{
return BIT(31) |
(offset & ~3) |
(dev->func << 8) |
(dev->slot << 11) |
(dev->bus << 16);
}
/*
* Convert a BAR number to BAR register offset.
*
* @dev: Device of BAR to check.
* @bar: Bar number.
*/
static inline uint8_t
pci_get_barreg(struct pci_device *dev, uint8_t bar)
{
switch (bar) {
case 0: return PCIREG_BAR0;
case 1: return PCIREG_BAR1;
case 2: return PCIREG_BAR2;
case 3: return PCIREG_BAR3;
case 4: return PCIREG_BAR4;
case 5: return PCIREG_BAR5;
default: return 0;
}
}
pcireg_t
pci_readl(struct pci_device *dev, uint32_t offset)
{
uint32_t address;
address = pci_conf_addr(dev, offset);
outl(0xCF8, address);
return inl(0xCFC) >> ((offset & 3) * 8);
}
void
pci_writel(struct pci_device *dev, uint32_t offset, pcireg_t val)
{
uint32_t address;
address = pci_conf_addr(dev, offset);
outl(0xCF8, address);
outl(0xCFC, val);
}
/*
* Map a BAR into kernel memory.
*
* @dev: Device of BAR to map.
* @barno: BAR number to map.
* @vap: Resulting virtual address.
*/
int
pci_map_bar(struct pci_device *dev, uint8_t barno, void **vap)
{
uint8_t barreg = pci_get_barreg(dev, barno);
uintptr_t tmp, tmp1, bar;
uint32_t size;
if (barreg == 0)
return -EINVAL;
/*
* Get the length of the region this BAR covers by writing a
* mask of 32 bits into the BAR register and seeing how many
* bits are unset. We can use this to compute the size of the
* region. We know that log2(len) bits must be unset.
*/
tmp = pci_readl(dev, barreg);
pci_writel(dev, barreg, 0xFFFFFFFF);
size = pci_readl(dev, barreg);
size = ~size + 1;
/* Restore old value and map the BAR */
pci_writel(dev, barreg, tmp);
/*
* We'll only need to worry about using one BAR
* if the device has a 32-bit MMIO space. However,
* with 64-bit MMIO spaces, two BARs are used.
*/
if (PCI_BAR_32(dev->bar[barno])) {
bar = dev->bar[barno] & PCI_BAR_MEMMASK;
} else {
/* Assume 64-bit */
tmp = dev->bar[barno] & PCI_BAR_MEMMASK;
tmp1 = dev->bar[barno + 1] & PCI_BAR_MEMMASK;
bar = COMBINE32(tmp1, tmp);
}
return bus_map(bar, size, 0, vap);
}
/*
* Enable MSI-X for a device and allocate an
* interrupt vector.
*
* @dev: Device to enable MSI-X for.
* @intr: MSI-X interrupt descriptor.
*/
int
pci_enable_msix(struct pci_device *dev, const struct msi_intr *intr)
{
volatile uint64_t *tbl;
struct cpu_info *ci;
uint32_t data, msg_ctl;
uint64_t msg_addr, tmp;
uint16_t tbl_off;
uint8_t bir;
uint8_t vector;
if (dev->msix_capoff == 0)
return -ENOTSUP;
/* Get the data from cap offset 0x04 */
data = pci_readl(dev, (dev->msix_capoff + 0x04));
bir = data & 3;
tbl_off = data & ~3;
ci = this_cpu();
msg_addr = (0xFEE00000 | (ci->apicid << 12));
/* Calculate the start of the message table */
tbl = (void *)((dev->bar[bir] & PCI_BAR_MEMMASK) + MMIO_OFFSET);
tbl = (void *)((char *)tbl + tbl_off);
/* Get the vector and setup handler */
vector = intr_alloc_vector(intr->name, IPL_BIO);
idt_set_desc(vector, IDT_INT_GATE, ISR(intr->handler), 0);
/*
* Setup the message data at bits 95:64 of the message
* table by ORing the interrupt vector to it. We also
* unmask the interrupt with bit 1 of the vector control.
*/
tmp = mmio_read64(&tbl[1]);
tmp |= vector;
tmp &= ~BIT(32);
/* Write the message table */
mmio_write64(&tbl[0], msg_addr);
mmio_write64(&tbl[1], tmp);
/*
* Set bit 16 of message control to enable MSI-X.
* Message control lives at cap offset 0x00 in bits
* 31:16.
*/
msg_ctl = pci_readl(dev, dev->msix_capoff);
msg_ctl |= BIT(31);
pci_writel(dev, dev->msix_capoff, msg_ctl);
return 0;
}
|