1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
|
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include <inttypes.h>
#include <bits/ensure.h>
#include <frg/allocation.hpp>
#include <frg/array.hpp>
#include <mlibc/allocator.hpp>
#include <mlibc/debug.hpp>
#include <mlibc/posix-sysdeps.hpp>
#include <mlibc/thread.hpp>
#include <mlibc/tcb.hpp>
#include <mlibc/tid.hpp>
#include <mlibc/threads.hpp>
static bool enableTrace = false;
struct ScopeTrace {
ScopeTrace(const char *file, int line, const char *function)
: _file(file), _line(line), _function(function) {
if(!enableTrace)
return;
mlibc::infoLogger() << "trace: Enter scope "
<< _file << ":" << _line << " (in function "
<< _function << ")" << frg::endlog;
}
~ScopeTrace() {
if(!enableTrace)
return;
mlibc::infoLogger() << "trace: Exit scope" << frg::endlog;
}
private:
const char *_file;
int _line;
const char *_function;
};
#define SCOPE_TRACE() ScopeTrace(__FILE__, __LINE__, __FUNCTION__)
static constexpr unsigned int mutexRecursive = 1;
static constexpr unsigned int mutexErrorCheck = 2;
// TODO: either use uint32_t or determine the bit based on sizeof(int).
static constexpr unsigned int mutex_owner_mask = (static_cast<uint32_t>(1) << 30) - 1;
static constexpr unsigned int mutex_waiters_bit = static_cast<uint32_t>(1) << 31;
// Only valid for the internal __mlibc_m mutex of wrlocks.
static constexpr unsigned int mutex_excl_bit = static_cast<uint32_t>(1) << 30;
static constexpr unsigned int rc_count_mask = (static_cast<uint32_t>(1) << 31) - 1;
static constexpr unsigned int rc_waiters_bit = static_cast<uint32_t>(1) << 31;
static constexpr size_t default_stacksize = 0x200000;
static constexpr size_t default_guardsize = 4096;
// ----------------------------------------------------------------------------
// pthread_attr and pthread functions.
// ----------------------------------------------------------------------------
// pthread_attr functions.
int pthread_attr_init(pthread_attr_t *attr) {
*attr = pthread_attr_t{};
attr->__mlibc_stacksize = default_stacksize;
attr->__mlibc_guardsize = default_guardsize;
attr->__mlibc_detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
int pthread_attr_destroy(pthread_attr_t *) {
return 0;
}
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate) {
*detachstate = attr->__mlibc_detachstate;
return 0;
}
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate) {
if (detachstate != PTHREAD_CREATE_DETACHED &&
detachstate != PTHREAD_CREATE_JOINABLE)
return EINVAL;
attr->__mlibc_detachstate = detachstate;
return 0;
}
int pthread_attr_getstacksize(const pthread_attr_t *__restrict attr, size_t *__restrict stacksize) {
*stacksize = attr->__mlibc_stacksize;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize) {
if (stacksize < PTHREAD_STACK_MIN)
return EINVAL;
attr->__mlibc_stacksize = stacksize;
return 0;
}
int pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr) {
*stackaddr = attr->__mlibc_stackaddr;
return 0;
}
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr) {
attr->__mlibc_stackaddr = stackaddr;
return 0;
}
int pthread_attr_getstack(const pthread_attr_t *attr, void **stackaddr, size_t *stacksize) {
*stackaddr = attr->__mlibc_stackaddr;
*stacksize = attr->__mlibc_stacksize;
return 0;
}
int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr, size_t stacksize) {
if (stacksize < PTHREAD_STACK_MIN)
return EINVAL;
attr->__mlibc_stacksize = stacksize;
attr->__mlibc_stackaddr = stackaddr;
return 0;
}
int pthread_attr_getguardsize(const pthread_attr_t *__restrict attr, size_t *__restrict guardsize) {
*guardsize = attr->__mlibc_guardsize;
return 0;
}
int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize) {
attr->__mlibc_guardsize = guardsize;
return 0;
}
int pthread_attr_getscope(const pthread_attr_t *attr, int *scope) {
*scope = attr->__mlibc_scope;
return 0;
}
int pthread_attr_setscope(pthread_attr_t *attr, int scope) {
if (scope != PTHREAD_SCOPE_SYSTEM &&
scope != PTHREAD_SCOPE_PROCESS)
return EINVAL;
if (scope == PTHREAD_SCOPE_PROCESS)
return ENOTSUP;
attr->__mlibc_scope = scope;
return 0;
}
int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *inheritsched) {
*inheritsched = attr->__mlibc_inheritsched;
return 0;
}
int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched) {
if (inheritsched != PTHREAD_INHERIT_SCHED &&
inheritsched != PTHREAD_EXPLICIT_SCHED)
return EINVAL;
attr->__mlibc_inheritsched = inheritsched;
return 0;
}
int pthread_attr_getschedparam(const pthread_attr_t *__restrict attr, struct sched_param *__restrict schedparam) {
*schedparam = attr->__mlibc_schedparam;
return 0;
}
int pthread_attr_setschedparam(pthread_attr_t *__restrict attr, const struct sched_param *__restrict schedparam) {
// TODO: this is supposed to return EINVAL for when the schedparam doesn't make sense
// for the given schedpolicy.
attr->__mlibc_schedparam = *schedparam;
return 0;
}
int pthread_attr_getschedpolicy(const pthread_attr_t *__restrict attr, int *__restrict policy) {
*policy = attr->__mlibc_schedpolicy;
return 0;
}
int pthread_attr_setschedpolicy(pthread_attr_t *__restrict attr, int policy) {
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)
return EINVAL;
attr->__mlibc_schedpolicy = policy;
return 0;
}
#if __MLIBC_LINUX_OPTION
int pthread_attr_getaffinity_np(const pthread_attr_t *__restrict attr,
size_t cpusetsize, cpu_set_t *__restrict cpusetp) {
if (!attr)
return EINVAL;
if (!attr->__mlibc_cpuset) {
memset(cpusetp, -1, cpusetsize);
return 0;
}
for (size_t cnt = cpusetsize; cnt < attr->__mlibc_cpusetsize; cnt++)
if (reinterpret_cast<char*>(attr->__mlibc_cpuset)[cnt] != '\0')
return ERANGE;
auto p = memcpy(cpusetp, attr->__mlibc_cpuset,
std::min(cpusetsize, attr->__mlibc_cpusetsize));
if (cpusetsize > attr->__mlibc_cpusetsize)
memset(p, '\0', cpusetsize - attr->__mlibc_cpusetsize);
return 0;
}
int pthread_attr_setaffinity_np(pthread_attr_t *__restrict attr,
size_t cpusetsize, const cpu_set_t *__restrict cpusetp) {
if (!attr)
return EINVAL;
if (!cpusetp || !cpusetsize) {
attr->__mlibc_cpuset = NULL;
attr->__mlibc_cpusetsize = 0;
return 0;
}
if (attr->__mlibc_cpusetsize != cpusetsize) {
auto newp = realloc(attr->__mlibc_cpuset, cpusetsize);
if (!newp)
return ENOMEM;
attr->__mlibc_cpuset = static_cast<cpu_set_t*>(newp);
attr->__mlibc_cpusetsize = cpusetsize;
}
memcpy(attr->__mlibc_cpuset, cpusetp, cpusetsize);
return 0;
}
int pthread_attr_getsigmask_np(const pthread_attr_t *__restrict attr,
sigset_t *__restrict sigmask) {
if (!attr)
return EINVAL;
if (!attr->__mlibc_sigmaskset) {
sigemptyset(sigmask);
return PTHREAD_ATTR_NO_SIGMASK_NP;
}
*sigmask = attr->__mlibc_sigmask;
return 0;
}
int pthread_attr_setsigmask_np(pthread_attr_t *__restrict attr,
const sigset_t *__restrict sigmask) {
if (!attr)
return EINVAL;
if (!sigmask) {
attr->__mlibc_sigmaskset = 0;
return 0;
}
attr->__mlibc_sigmask = *sigmask;
attr->__mlibc_sigmaskset = 1;
// Filter out internally used signals.
sigdelset(&attr->__mlibc_sigmask, SIGCANCEL);
return 0;
}
namespace {
void get_own_stackinfo(void **stack_addr, size_t *stack_size) {
auto fp = fopen("/proc/self/maps", "r");
if (!fp) {
mlibc::infoLogger() << "mlibc pthreads: /proc/self/maps does not exist! Producing incorrect"
" stack results!" << frg::endlog;
return;
}
char line[256];
auto sp = mlibc::get_sp();
while (fgets(line, 256, fp)) {
uintptr_t from, to;
if(sscanf(line, "%" SCNxPTR "-%" SCNxPTR, &from, &to) != 2)
continue;
if (sp < to && sp > from) {
// We need to return the lowest byte of the stack.
*stack_addr = reinterpret_cast<void*>(from);
*stack_size = to - from;
fclose(fp);
return;
}
}
fclose(fp);
}
}
int pthread_getattr_np(pthread_t thread, pthread_attr_t *attr) {
auto tcb = reinterpret_cast<Tcb*>(thread);
*attr = pthread_attr_t{};
if (!tcb->stackAddr || !tcb->stackSize) {
get_own_stackinfo(&attr->__mlibc_stackaddr, &attr->__mlibc_stacksize);
} else {
attr->__mlibc_stacksize = tcb->stackSize;
attr->__mlibc_stackaddr = tcb->stackAddr;
}
attr->__mlibc_guardsize = tcb->guardSize;
attr->__mlibc_detachstate = tcb->isJoinable ? PTHREAD_CREATE_JOINABLE : PTHREAD_CREATE_DETACHED;
mlibc::infoLogger() << "pthread_getattr_np(): Implementation is incomplete!" << frg::endlog;
return 0;
}
int pthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t *mask) {
MLIBC_CHECK_OR_ENOSYS(mlibc::sys_getthreadaffinity, ENOSYS);
return mlibc::sys_getthreadaffinity(reinterpret_cast<Tcb*>(thread)->tid, cpusetsize, mask);
}
int pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const cpu_set_t *mask) {
MLIBC_CHECK_OR_ENOSYS(mlibc::sys_setthreadaffinity, ENOSYS);
return mlibc::sys_setthreadaffinity(reinterpret_cast<Tcb*>(thread)->tid, cpusetsize, mask);
}
#endif // __MLIBC_LINUX_OPTION
extern "C" Tcb *__rtdl_allocateTcb();
// pthread functions.
int pthread_create(pthread_t *__restrict thread, const pthread_attr_t *__restrict attrp,
void *(*entry) (void *), void *__restrict user_arg) {
return mlibc::thread_create(thread, attrp, reinterpret_cast<void *>(entry), user_arg, false);
}
pthread_t pthread_self(void) {
return reinterpret_cast<pthread_t>(mlibc::get_current_tcb());
}
int pthread_equal(pthread_t t1, pthread_t t2) {
if(t1 == t2)
return 1;
return 0;
}
namespace {
struct key_global_info {
bool in_use;
void (*dtor)(void *);
uint64_t generation;
};
constinit frg::array<
key_global_info,
PTHREAD_KEYS_MAX
> key_globals_{};
FutexLock key_mutex_;
}
namespace mlibc {
__attribute__ ((__noreturn__)) void do_exit() {
sys_thread_exit();
__builtin_unreachable();
}
}
__attribute__ ((__noreturn__)) void pthread_exit(void *ret_val) {
auto self = mlibc::get_current_tcb();
if (__atomic_load_n(&self->cancelBits, __ATOMIC_RELAXED) & tcbExitingBit)
mlibc::do_exit();
__atomic_fetch_or(&self->cancelBits, tcbExitingBit, __ATOMIC_RELAXED);
auto hand = self->cleanupEnd;
while (hand) {
auto old = hand;
hand->func(hand->arg);
hand = hand->prev;
frg::destruct(getAllocator(), old);
}
for (size_t j = 0; j < PTHREAD_DESTRUCTOR_ITERATIONS; j++) {
for (size_t i = 0; i < PTHREAD_KEYS_MAX; i++) {
if (auto v = pthread_getspecific(i)) {
key_mutex_.lock();
auto dtor = key_globals_[i].dtor;
key_mutex_.unlock();
if (dtor) {
dtor(v);
(*self->localKeys)[i].value = nullptr;
}
}
}
}
self->returnValue.voidPtr = ret_val;
__atomic_store_n(&self->didExit, 1, __ATOMIC_RELEASE);
mlibc::sys_futex_wake(&self->didExit);
// TODO: clean up thread resources when we are detached.
// TODO: do exit(0) when we're the only thread instead
mlibc::do_exit();
}
int pthread_join(pthread_t thread, void **ret) {
return mlibc::thread_join(thread, ret);
}
int pthread_detach(pthread_t thread) {
auto tcb = reinterpret_cast<Tcb*>(thread);
if (!__atomic_load_n(&tcb->isJoinable, __ATOMIC_RELAXED))
return EINVAL;
int expected = 1;
if(!__atomic_compare_exchange_n(&tcb->isJoinable, &expected, 0, false, __ATOMIC_RELEASE,
__ATOMIC_RELAXED))
return EINVAL;
return 0;
}
void pthread_cleanup_push(void (*func) (void *), void *arg) {
auto self = mlibc::get_current_tcb();
auto hand = frg::construct<Tcb::CleanupHandler>(getAllocator());
hand->func = func;
hand->arg = arg;
hand->next = nullptr;
hand->prev = self->cleanupEnd;
if (self->cleanupEnd)
self->cleanupEnd->next = hand;
self->cleanupEnd = hand;
if (!self->cleanupBegin)
self->cleanupBegin = self->cleanupEnd;
}
void pthread_cleanup_pop(int execute) {
auto self = mlibc::get_current_tcb();
auto hand = self->cleanupEnd;
if (self->cleanupEnd)
self->cleanupEnd = self->cleanupEnd->prev;
if (self->cleanupEnd)
self->cleanupEnd->next = nullptr;
if (execute)
hand->func(hand->arg);
frg::destruct(getAllocator(), hand);
}
int pthread_setname_np(pthread_t thread, const char *name) {
auto tcb = reinterpret_cast<Tcb*>(thread);
auto sysdep = MLIBC_CHECK_OR_ENOSYS(mlibc::sys_thread_setname, ENOSYS);
if(int e = sysdep(tcb, name); e) {
return e;
}
return 0;
}
int pthread_getname_np(pthread_t thread, char *name, size_t size) {
auto tcb = reinterpret_cast<Tcb*>(thread);
auto sysdep = MLIBC_CHECK_OR_ENOSYS(mlibc::sys_thread_getname, ENOSYS);
if(int e = sysdep(tcb, name, size); e) {
return e;
}
return 0;
}
int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param) {
auto tcb = reinterpret_cast<Tcb*>(thread);
MLIBC_CHECK_OR_ENOSYS(mlibc::sys_setschedparam, ENOSYS);
if(int e = mlibc::sys_setschedparam(tcb, policy, param); e) {
return e;
}
return 0;
}
int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param) {
auto tcb = reinterpret_cast<Tcb*>(thread);
MLIBC_CHECK_OR_ENOSYS(mlibc::sys_getschedparam, ENOSYS);
if(int e = mlibc::sys_getschedparam(tcb, policy, param); e) {
return e;
}
return 0;
}
//pthread cancel functions
extern "C" void __mlibc_do_cancel() {
//TODO(geert): for now the same as pthread_exit()
pthread_exit(PTHREAD_CANCELED);
}
namespace {
void sigcancel_handler(int signal, siginfo_t *info, void *ucontext) {
ucontext_t *uctx = static_cast<ucontext_t*>(ucontext);
// The function could be called from other signals, or from another
// process, in which case we should do nothing.
if (signal != SIGCANCEL || info->si_pid != getpid() ||
info->si_code != SI_TKILL)
return;
auto tcb = reinterpret_cast<Tcb*>(mlibc::get_current_tcb());
int old_value = tcb->cancelBits;
/*
* When a thread is marked with deferred cancellation and performs a blocking syscall,
* the spec mandates that the syscall can get interrupted before it has caused any side
* effects (e.g. before a read() has read any bytes from disk). If the syscall has
* already caused side effects it should return its partial work, and set the program
* counter just after the syscall. If the syscall hasn't caused any side effects, it
* should fail with EINTR and set the program counter to the syscall instruction.
*
* cancellable_syscall:
* test whether_a_cancel_is_queued
* je cancel
* syscall
* end_cancellable_syscall
*
* The mlibc::sys_before_cancellable_syscall sysdep should return 1 when the
* program counter is between the 'canellable_syscall' and 'end_cancellable_syscall' label.
*/
if (!(old_value & tcbCancelAsyncBit) &&
mlibc::sys_before_cancellable_syscall && !mlibc::sys_before_cancellable_syscall(uctx))
return;
int bitmask = tcbCancelTriggerBit | tcbCancelingBit;
while (1) {
int new_value = old_value | bitmask;
// Check if we are already cancelled or exiting
if (old_value == new_value || old_value & tcbExitingBit)
return;
int current_value = old_value;
if (__atomic_compare_exchange_n(&tcb->cancelBits, ¤t_value,
new_value, true,__ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
tcb->returnValue.voidPtr = PTHREAD_CANCELED;
// Perform cancellation
__mlibc_do_cancel();
break;
}
old_value = current_value;
}
}
}
namespace mlibc {
namespace {
struct PthreadSignalInstaller {
PthreadSignalInstaller() {
struct sigaction sa;
sa.sa_sigaction = sigcancel_handler;
sa.sa_flags = SA_SIGINFO;
auto e = ENOSYS;
if(sys_sigaction)
e = sys_sigaction(SIGCANCEL, &sa, NULL);
// Opt-out of cancellation support.
if(e == ENOSYS)
return;
__ensure(!e);
}
};
PthreadSignalInstaller pthread_signal_installer;
} // anonymous namespace
} // namespace mlibc
int pthread_setcanceltype(int type, int *oldtype) {
if (type != PTHREAD_CANCEL_DEFERRED && type != PTHREAD_CANCEL_ASYNCHRONOUS)
return EINVAL;
auto self = reinterpret_cast<Tcb *>(mlibc::get_current_tcb());
int old_value = self->cancelBits;
while (1) {
int new_value = old_value & ~tcbCancelAsyncBit;
if (type == PTHREAD_CANCEL_ASYNCHRONOUS)
new_value |= tcbCancelAsyncBit;
if (oldtype)
*oldtype = ((old_value & tcbCancelAsyncBit)
? PTHREAD_CANCEL_ASYNCHRONOUS
: PTHREAD_CANCEL_DEFERRED);
// Avoid unecessary atomic op.
if (old_value == new_value)
break;
int current_value = old_value;
if (__atomic_compare_exchange_n(&self->cancelBits, ¤t_value,
new_value, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
if (mlibc::tcb_async_cancelled(new_value))
__mlibc_do_cancel();
break;
}
old_value = current_value;
}
return 0;
}
int pthread_setcancelstate(int state, int *oldstate) {
if (state != PTHREAD_CANCEL_ENABLE && state != PTHREAD_CANCEL_DISABLE)
return EINVAL;
auto self = reinterpret_cast<Tcb *>(mlibc::get_current_tcb());
int old_value = self->cancelBits;
while (1) {
int new_value = old_value & ~tcbCancelEnableBit;
if (state == PTHREAD_CANCEL_ENABLE)
new_value |= tcbCancelEnableBit;
if (oldstate)
*oldstate = ((old_value & tcbCancelEnableBit)
? PTHREAD_CANCEL_ENABLE
: PTHREAD_CANCEL_DISABLE);
// Avoid unecessary atomic op.
if (old_value == new_value)
break;
int current_value = old_value;
if (__atomic_compare_exchange_n(&self->cancelBits, ¤t_value,
new_value, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
if (mlibc::tcb_async_cancelled(new_value))
__mlibc_do_cancel();
sigset_t set = {};
sigaddset(&set, SIGCANCEL);
if (new_value & PTHREAD_CANCEL_ENABLE)
sigprocmask(SIG_UNBLOCK, &set, NULL);
else
sigprocmask(SIG_BLOCK, &set, NULL);
break;
}
old_value = current_value;
}
return 0;
}
void pthread_testcancel(void) {
auto self = reinterpret_cast<Tcb *>(mlibc::get_current_tcb());
int value = self->cancelBits;
if ((value & tcbCancelEnableBit) && (value & tcbCancelTriggerBit)) {
__mlibc_do_cancel();
__builtin_unreachable();
}
}
int pthread_cancel(pthread_t thread) {
if (!mlibc::sys_tgkill) {
MLIBC_MISSING_SYSDEP();
return ENOSYS;
}
auto tcb = reinterpret_cast<Tcb *>(thread);
// Check if the TCB is valid, somewhat..
if (tcb->selfPointer != tcb)
return ESRCH;
int old_value = __atomic_load_n(&tcb->cancelBits, __ATOMIC_RELAXED);
while (1) {
int bitmask = tcbCancelTriggerBit;
int new_value = old_value | bitmask;
if (old_value == new_value)
break;
int current_value = old_value;
if (__atomic_compare_exchange_n(&tcb->cancelBits, ¤t_value,
new_value, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
if (mlibc::tcb_cancel_enabled(new_value)) {
pid_t pid = getpid();
int res = mlibc::sys_tgkill(pid, tcb->tid, SIGCANCEL);
current_value = __atomic_load_n(&tcb->cancelBits, __ATOMIC_RELAXED);
// If we can't find the thread anymore, it's possible that it exited between
// us setting the cancel trigger bit, and us sending the signal. Check the
// cancelBits for tcbExitingBit to confirm that.
// XXX(qookie): This will be an use-after-free once we start freeing TCBs on
// exit. Perhaps the TCB should be refcounted.
if (!(res == ESRCH && (current_value & tcbExitingBit)))
return res;
}
break;
}
old_value = current_value;
}
return 0;
}
int pthread_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void)) {
auto self = mlibc::get_current_tcb();
auto hand = frg::construct<Tcb::AtforkHandler>(getAllocator());
if (!hand)
return -1;
hand->prepare = prepare;
hand->parent = parent;
hand->child = child;
hand->next = nullptr;
hand->prev = self->atforkEnd;
if (self->atforkEnd)
self->atforkEnd->next = hand;
self->atforkEnd = hand;
if (!self->atforkBegin)
self->atforkBegin = self->atforkEnd;
return 0;
}
// ----------------------------------------------------------------------------
// pthread_key functions.
// ----------------------------------------------------------------------------
int pthread_key_create(pthread_key_t *out, void (*destructor)(void *)) {
SCOPE_TRACE();
auto g = frg::guard(&key_mutex_);
pthread_key_t key = PTHREAD_KEYS_MAX;
for (size_t i = 0; i < PTHREAD_KEYS_MAX; i++) {
if (!key_globals_[i].in_use) {
key = i;
break;
}
}
if (key == PTHREAD_KEYS_MAX)
return EAGAIN;
key_globals_[key].in_use = true;
key_globals_[key].dtor = destructor;
*out = key;
return 0;
}
int pthread_key_delete(pthread_key_t key) {
SCOPE_TRACE();
auto g = frg::guard(&key_mutex_);
if (key >= PTHREAD_KEYS_MAX || !key_globals_[key].in_use)
return EINVAL;
key_globals_[key].in_use = false;
key_globals_[key].dtor = nullptr;
key_globals_[key].generation++;
return 0;
}
void *pthread_getspecific(pthread_key_t key) {
SCOPE_TRACE();
auto self = mlibc::get_current_tcb();
auto g = frg::guard(&key_mutex_);
if (key >= PTHREAD_KEYS_MAX || !key_globals_[key].in_use)
return nullptr;
if (key_globals_[key].generation > (*self->localKeys)[key].generation) {
(*self->localKeys)[key].value = nullptr;
(*self->localKeys)[key].generation = key_globals_[key].generation;
}
return (*self->localKeys)[key].value;
}
int pthread_setspecific(pthread_key_t key, const void *value) {
SCOPE_TRACE();
auto self = mlibc::get_current_tcb();
auto g = frg::guard(&key_mutex_);
if (key >= PTHREAD_KEYS_MAX || !key_globals_[key].in_use)
return EINVAL;
(*self->localKeys)[key].value = const_cast<void *>(value);
(*self->localKeys)[key].generation = key_globals_[key].generation;
return 0;
}
// ----------------------------------------------------------------------------
// pthread_once functions.
// ----------------------------------------------------------------------------
static constexpr unsigned int onceComplete = 1;
static constexpr unsigned int onceLocked = 2;
int pthread_once(pthread_once_t *once, void (*function) (void)) {
SCOPE_TRACE();
auto expected = __atomic_load_n(&once->__mlibc_done, __ATOMIC_ACQUIRE);
// fast path: the function was already run.
while(!(expected & onceComplete)) {
if(!expected) {
// try to acquire the mutex.
if(!__atomic_compare_exchange_n(&once->__mlibc_done,
&expected, onceLocked, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE))
continue;
function();
// unlock the mutex.
__atomic_exchange_n(&once->__mlibc_done, onceComplete, __ATOMIC_RELEASE);
if(int e = mlibc::sys_futex_wake((int *)&once->__mlibc_done); e)
__ensure(!"sys_futex_wake() failed");
return 0;
}else{
// a different thread is currently running the initializer.
__ensure(expected == onceLocked);
if(int e = mlibc::sys_futex_wait((int *)&once->__mlibc_done, onceLocked, nullptr); e)
__ensure(!"sys_futex_wait() failed");
expected = __atomic_load_n(&once->__mlibc_done, __ATOMIC_ACQUIRE);
}
}
return 0;
}
// ----------------------------------------------------------------------------
// pthread_mutexattr and pthread_mutex functions.
// ----------------------------------------------------------------------------
// pthread_mutexattr functions
int pthread_mutexattr_init(pthread_mutexattr_t *attr) {
SCOPE_TRACE();
return mlibc::thread_mutexattr_init(attr);
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) {
SCOPE_TRACE();
return mlibc::thread_mutexattr_destroy(attr);
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *__restrict attr, int *__restrict type) {
return mlibc::thread_mutexattr_gettype(attr, type);
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) {
return mlibc::thread_mutexattr_settype(attr, type);
}
int pthread_mutexattr_getrobust(const pthread_mutexattr_t *__restrict attr,
int *__restrict robust) {
*robust = attr->__mlibc_robust;
return 0;
}
int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr, int robust) {
if (robust != PTHREAD_MUTEX_STALLED && robust != PTHREAD_MUTEX_ROBUST)
return EINVAL;
attr->__mlibc_robust = robust;
return 0;
}
int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr, int *pshared) {
*pshared = attr->__mlibc_pshared;
return 0;
}
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) {
if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED)
return EINVAL;
attr->__mlibc_pshared = pshared;
return 0;
}
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *__restrict attr,
int *__restrict protocol) {
*protocol = attr->__mlibc_protocol;
return 0;
}
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol) {
if (protocol != PTHREAD_PRIO_NONE && protocol != PTHREAD_PRIO_INHERIT
&& protocol != PTHREAD_PRIO_PROTECT)
return EINVAL;
attr->__mlibc_protocol = protocol;
return 0;
}
int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *__restrict attr,
int *__restrict prioceiling) {
(void)attr;
(void)prioceiling;
return EINVAL;
}
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int prioceiling) {
(void)attr;
(void)prioceiling;
return EINVAL;
}
// pthread_mutex functions
int pthread_mutex_init(pthread_mutex_t *__restrict mutex,
const pthread_mutexattr_t *__restrict attr) {
SCOPE_TRACE();
return mlibc::thread_mutex_init(mutex, attr);
}
int pthread_mutex_destroy(pthread_mutex_t *mutex) {
return mlibc::thread_mutex_destroy(mutex);
}
int pthread_mutex_lock(pthread_mutex_t *mutex) {
SCOPE_TRACE();
return mlibc::thread_mutex_lock(mutex);
}
int pthread_mutex_trylock(pthread_mutex_t *mutex) {
SCOPE_TRACE();
unsigned int this_tid = mlibc::this_tid();
unsigned int expected = __atomic_load_n(&mutex->__mlibc_state, __ATOMIC_RELAXED);
if(!expected) {
// Try to take the mutex here.
if(__atomic_compare_exchange_n(&mutex->__mlibc_state,
&expected, this_tid, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE)) {
__ensure(!mutex->__mlibc_recursion);
mutex->__mlibc_recursion = 1;
return 0;
}
} else {
// If this (recursive) mutex is already owned by us, increment the recursion level.
if((expected & mutex_owner_mask) == this_tid) {
if(!(mutex->__mlibc_flags & mutexRecursive)) {
return EBUSY;
}
++mutex->__mlibc_recursion;
return 0;
}
}
return EBUSY;
}
int pthread_mutex_timedlock(pthread_mutex_t *__restrict,
const struct timespec *__restrict) {
__ensure(!"Not implemented");
__builtin_unreachable();
}
int pthread_mutex_unlock(pthread_mutex_t *mutex) {
SCOPE_TRACE();
return mlibc::thread_mutex_unlock(mutex);
}
int pthread_mutex_consistent(pthread_mutex_t *) {
__ensure(!"Not implemented");
__builtin_unreachable();
}
// ----------------------------------------------------------------------------
// pthread_condattr and pthread_cond functions.
// ----------------------------------------------------------------------------
int pthread_condattr_init(pthread_condattr_t *attr) {
attr->__mlibc_pshared = PTHREAD_PROCESS_PRIVATE;
attr->__mlibc_clock = CLOCK_REALTIME;
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t *attr) {
memset(attr, 0, sizeof(*attr));
return 0;
}
int pthread_condattr_getclock(const pthread_condattr_t *__restrict attr,
clockid_t *__restrict clock) {
*clock = attr->__mlibc_clock;
return 0;
}
int pthread_condattr_setclock(pthread_condattr_t *attr, clockid_t clock) {
if (clock != CLOCK_REALTIME && clock != CLOCK_MONOTONIC
&& clock != CLOCK_MONOTONIC_RAW && clock != CLOCK_REALTIME_COARSE
&& clock != CLOCK_MONOTONIC_COARSE && clock != CLOCK_BOOTTIME)
return EINVAL;
attr->__mlibc_clock = clock;
return 0;
}
int pthread_condattr_getpshared(const pthread_condattr_t *__restrict attr,
int *__restrict pshared) {
*pshared = attr->__mlibc_pshared;
return 0;
}
int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared) {
if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED)
return EINVAL;
attr->__mlibc_pshared = pshared;
return 0;
}
int pthread_cond_init(pthread_cond_t *__restrict cond, const pthread_condattr_t *__restrict attr) {
SCOPE_TRACE();
return mlibc::thread_cond_init(cond, attr);
}
int pthread_cond_destroy(pthread_cond_t *cond) {
SCOPE_TRACE();
return mlibc::thread_cond_destroy(cond);
}
int pthread_cond_wait(pthread_cond_t *__restrict cond, pthread_mutex_t *__restrict mutex) {
return pthread_cond_timedwait(cond, mutex, nullptr);
}
int pthread_cond_timedwait(pthread_cond_t *__restrict cond, pthread_mutex_t *__restrict mutex,
const struct timespec *__restrict abstime) {
return mlibc::thread_cond_timedwait(cond, mutex, abstime);
}
int pthread_cond_signal(pthread_cond_t *cond) {
SCOPE_TRACE();
return pthread_cond_broadcast(cond);
}
int pthread_cond_broadcast(pthread_cond_t *cond) {
SCOPE_TRACE();
return mlibc::thread_cond_broadcast(cond);
}
// ----------------------------------------------------------------------------
// pthread_barrierattr and pthread_barrier functions.
// ----------------------------------------------------------------------------
int pthread_barrierattr_init(pthread_barrierattr_t *attr) {
attr->__mlibc_pshared = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_barrierattr_getpshared(const pthread_barrierattr_t *__restrict attr,
int *__restrict pshared) {
*pshared = attr->__mlibc_pshared;
return 0;
}
int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr, int pshared) {
if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE)
return EINVAL;
attr->__mlibc_pshared = pshared;
return 0;
}
int pthread_barrierattr_destroy(pthread_barrierattr_t *) {
return 0;
}
int pthread_barrier_init(pthread_barrier_t *__restrict barrier,
const pthread_barrierattr_t *__restrict attr, unsigned count) {
if (count == 0)
return EINVAL;
barrier->__mlibc_waiting = 0;
barrier->__mlibc_inside = 0;
barrier->__mlibc_seq = 0;
barrier->__mlibc_count = count;
// Since we don't implement these yet, set a flag to error later.
auto pshared = attr ? attr->__mlibc_pshared : PTHREAD_PROCESS_PRIVATE;
barrier->__mlibc_flags = pshared;
return 0;
}
int pthread_barrier_destroy(pthread_barrier_t *barrier) {
// Wait until there are no threads still using the barrier.
unsigned inside = 0;
do {
unsigned expected = __atomic_load_n(&barrier->__mlibc_inside, __ATOMIC_RELAXED);
if (expected == 0)
break;
int e = mlibc::sys_futex_wait((int *)&barrier->__mlibc_inside, expected, nullptr);
if (e != 0 && e != EAGAIN && e != EINTR)
mlibc::panicLogger() << "mlibc: sys_futex_wait() returned error " << e << frg::endlog;
} while (inside > 0);
memset(barrier, 0, sizeof *barrier);
return 0;
}
int pthread_barrier_wait(pthread_barrier_t *barrier) {
if (barrier->__mlibc_flags != 0) {
mlibc::panicLogger() << "mlibc: pthread_barrier_t flags were non-zero"
<< frg::endlog;
}
// inside is incremented on entry and decremented on exit.
// This is used to synchronise with pthread_barrier_destroy, to ensure that a thread doesn't pass
// the barrier and immediately destroy its state while other threads still rely on it.
__atomic_fetch_add(&barrier->__mlibc_inside, 1, __ATOMIC_ACQUIRE);
auto leave = [&](){
unsigned inside = __atomic_sub_fetch(&barrier->__mlibc_inside, 1, __ATOMIC_RELEASE);
if (inside == 0)
mlibc::sys_futex_wake((int *)&barrier->__mlibc_inside);
};
unsigned seq = __atomic_load_n(&barrier->__mlibc_seq, __ATOMIC_ACQUIRE);
while (true) {
unsigned expected = __atomic_load_n(&barrier->__mlibc_waiting, __ATOMIC_RELAXED);
bool swapped = __atomic_compare_exchange_n(&barrier->__mlibc_waiting, &expected, expected + 1, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
if (swapped) {
if (expected + 1 == barrier->__mlibc_count) {
// We were the last thread to hit the barrier. Reset waiters and wake the others.
__atomic_fetch_add(&barrier->__mlibc_seq, 1, __ATOMIC_ACQUIRE);
__atomic_store_n(&barrier->__mlibc_waiting, 0, __ATOMIC_RELEASE);
mlibc::sys_futex_wake((int *)&barrier->__mlibc_seq);
leave();
return PTHREAD_BARRIER_SERIAL_THREAD;
}
while (true) {
int e = mlibc::sys_futex_wait((int *)&barrier->__mlibc_seq, seq, nullptr);
if (e != 0 && e != EAGAIN && e != EINTR)
mlibc::panicLogger() << "mlibc: sys_futex_wait() returned error " << e << frg::endlog;
unsigned newSeq = __atomic_load_n(&barrier->__mlibc_seq, __ATOMIC_ACQUIRE);
if (newSeq > seq) {
leave();
return 0;
}
}
}
}
}
// ----------------------------------------------------------------------------
// pthread_rwlock functions.
// ----------------------------------------------------------------------------
namespace {
void rwlock_m_lock(pthread_rwlock_t *rw, bool excl) {
unsigned int m_expected = __atomic_load_n(&rw->__mlibc_m, __ATOMIC_RELAXED);
while(true) {
if(m_expected) {
__ensure(m_expected & mutex_owner_mask);
// Try to set the waiters bit.
if(!(m_expected & mutex_waiters_bit)) {
unsigned int desired = m_expected | mutex_waiters_bit;
if(!__atomic_compare_exchange_n(&rw->__mlibc_m,
&m_expected, desired, false, __ATOMIC_RELAXED, __ATOMIC_RELAXED))
continue;
}
// Wait on the futex.
mlibc::sys_futex_wait((int *)&rw->__mlibc_m, m_expected | mutex_waiters_bit, nullptr);
// Opportunistically try to take the lock after we wake up.
m_expected = 0;
}else{
// Try to lock the mutex.
unsigned int desired = 1;
if(excl)
desired |= mutex_excl_bit;
if(__atomic_compare_exchange_n(&rw->__mlibc_m,
&m_expected, desired, false, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED))
break;
}
}
}
int rwlock_m_trylock(pthread_rwlock_t *rw, bool excl) {
unsigned int m_expected = __atomic_load_n(&rw->__mlibc_m, __ATOMIC_RELAXED);
if(!m_expected) {
// Try to lock the mutex.
unsigned int desired = 1;
if(excl)
desired |= mutex_excl_bit;
if(__atomic_compare_exchange_n(&rw->__mlibc_m,
&m_expected, desired, false, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED))
return 0;
}
__ensure(m_expected & mutex_owner_mask);
// POSIX says that this function should never block but also that
// readers should not be blocked by readers. We implement this by returning EAGAIN
// (and not EBUSY) if a reader would block a reader.
if(!excl && !(m_expected & mutex_excl_bit))
return EAGAIN;
return EBUSY;
}
void rwlock_m_unlock(pthread_rwlock_t *rw) {
auto m = __atomic_exchange_n(&rw->__mlibc_m, 0, __ATOMIC_RELEASE);
if(m & mutex_waiters_bit)
mlibc::sys_futex_wake((int *)&rw->__mlibc_m);
}
}
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr) {
attr->__mlibc_pshared = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *__restrict attr,
int *__restrict pshared) {
*pshared = attr->__mlibc_pshared;
return 0;
}
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared) {
if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE)
return EINVAL;
attr->__mlibc_pshared = pshared;
return 0;
}
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *) {
return 0;
}
int pthread_rwlock_init(pthread_rwlock_t *__restrict rw, const pthread_rwlockattr_t *__restrict attr) {
SCOPE_TRACE();
rw->__mlibc_m = 0;
rw->__mlibc_rc = 0;
// Since we don't implement this yet, set a flag to error later.
auto pshared = attr ? attr->__mlibc_pshared : PTHREAD_PROCESS_PRIVATE;
rw->__mlibc_flags = pshared;
return 0;
}
int pthread_rwlock_destroy(pthread_rwlock_t *rw) {
__ensure(!rw->__mlibc_m);
__ensure(!rw->__mlibc_rc);
return 0;
}
int pthread_rwlock_trywrlock(pthread_rwlock_t *rw) {
SCOPE_TRACE();
if (rw->__mlibc_flags != 0) {
mlibc::panicLogger() << "mlibc: pthread_rwlock_t flags were non-zero"
<< frg::endlog;
}
// Take the __mlibc_m mutex.
// Will be released in pthread_rwlock_unlock().
if(int e = rwlock_m_trylock(rw, true))
return e;
// Check that there are no readers.
unsigned int rc_expected = __atomic_load_n(&rw->__mlibc_rc, __ATOMIC_ACQUIRE);
if(rc_expected) {
rwlock_m_unlock(rw);
return EBUSY;
}
return 0;
}
int pthread_rwlock_wrlock(pthread_rwlock_t *rw) {
SCOPE_TRACE();
if (rw->__mlibc_flags != 0) {
mlibc::panicLogger() << "mlibc: pthread_rwlock_t flags were non-zero"
<< frg::endlog;
}
// Take the __mlibc_m mutex.
// Will be released in pthread_rwlock_unlock().
rwlock_m_lock(rw, true);
// Now wait until there are no more readers.
unsigned int rc_expected = __atomic_load_n(&rw->__mlibc_rc, __ATOMIC_ACQUIRE);
while(true) {
if(!rc_expected)
break;
__ensure(rc_expected & rc_count_mask);
// Try to set the waiters bit.
if(!(rc_expected & rc_waiters_bit)) {
unsigned int desired = rc_expected | rc_count_mask;
if(!__atomic_compare_exchange_n(&rw->__mlibc_rc,
&rc_expected, desired, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE))
continue;
}
// Wait on the futex.
mlibc::sys_futex_wait((int *)&rw->__mlibc_rc, rc_expected | rc_waiters_bit, nullptr);
// Re-check the reader counter.
rc_expected = __atomic_load_n(&rw->__mlibc_rc, __ATOMIC_ACQUIRE);
}
return 0;
}
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rw) {
SCOPE_TRACE();
if (rw->__mlibc_flags != 0) {
mlibc::panicLogger() << "mlibc: pthread_rwlock_t flags were non-zero"
<< frg::endlog;
}
// Increment the reader count while holding the __mlibc_m mutex.
if(int e = rwlock_m_trylock(rw, false); e)
return e;
__atomic_fetch_add(&rw->__mlibc_rc, 1, __ATOMIC_ACQUIRE);
rwlock_m_unlock(rw);
return 0;
}
int pthread_rwlock_rdlock(pthread_rwlock_t *rw) {
SCOPE_TRACE();
if (rw->__mlibc_flags != 0) {
mlibc::panicLogger() << "mlibc: pthread_rwlock_t flags were non-zero"
<< frg::endlog;
}
// Increment the reader count while holding the __mlibc_m mutex.
rwlock_m_lock(rw, false);
__atomic_fetch_add(&rw->__mlibc_rc, 1, __ATOMIC_ACQUIRE);
rwlock_m_unlock(rw);
return 0;
}
int pthread_rwlock_unlock(pthread_rwlock_t *rw) {
SCOPE_TRACE();
unsigned int rc_expected = __atomic_load_n(&rw->__mlibc_rc, __ATOMIC_RELAXED);
if(!rc_expected) {
// We are doing a write-unlock.
rwlock_m_unlock(rw);
return 0;
}else{
// We are doing a read-unlock.
while(true) {
unsigned int count = rc_expected & rc_count_mask;
__ensure(count);
// Try to decrement the count.
if(count == 1 && (rc_expected & rc_waiters_bit)) {
unsigned int desired = 0;
if(!__atomic_compare_exchange_n(&rw->__mlibc_rc,
&rc_expected, desired, false, __ATOMIC_RELEASE, __ATOMIC_RELAXED))
continue;
// Wake the futex.
mlibc::sys_futex_wake((int *)&rw->__mlibc_rc);
break;
}else{
unsigned int desired = (rc_expected & ~rc_count_mask) | (count - 1);
if(!__atomic_compare_exchange_n(&rw->__mlibc_rc,
&rc_expected, desired, false, __ATOMIC_RELEASE, __ATOMIC_RELAXED))
continue;
break;
}
}
return 0;
}
}
int pthread_getcpuclockid(pthread_t, clockid_t *) {
mlibc::infoLogger() << "mlibc: pthread_getcpuclockid() always returns ENOENT"
<< frg::endlog;
return ENOENT;
}
|