1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
#include <abi-bits/errno.h>
#include <bits/threads.h>
#include <bits/ensure.h>
#include <mlibc/all-sysdeps.hpp>
#include <mlibc/debug.hpp>
#include <mlibc/lock.hpp>
#include <mlibc/threads.hpp>
#include <mlibc/tcb.hpp>
extern "C" Tcb *__rtdl_allocateTcb();
namespace mlibc {
int thread_create(struct __mlibc_thread_data **__restrict thread, const struct __mlibc_threadattr *__restrict attrp, void *entry, void *__restrict user_arg, bool returns_int) {
auto new_tcb = __rtdl_allocateTcb();
pid_t tid;
struct __mlibc_threadattr attr = {};
if (!attrp)
thread_attr_init(&attr);
else
attr = *attrp;
if (attr.__mlibc_cpuset)
mlibc::infoLogger() << "pthread_create(): cpuset is ignored!" << frg::endlog;
if (attr.__mlibc_sigmaskset)
mlibc::infoLogger() << "pthread_create(): sigmask is ignored!" << frg::endlog;
// TODO: due to alignment guarantees, the stackaddr and stacksize might change
// when the stack is allocated. Currently this isn't propagated to the TCB,
// but it should be.
void *stack = attr.__mlibc_stackaddr;
if (!mlibc::sys_prepare_stack) {
MLIBC_MISSING_SYSDEP();
return ENOSYS;
}
int ret = mlibc::sys_prepare_stack(&stack, entry,
user_arg, new_tcb, &attr.__mlibc_stacksize, &attr.__mlibc_guardsize, &new_tcb->stackAddr);
if (ret)
return ret;
if (!mlibc::sys_clone) {
MLIBC_MISSING_SYSDEP();
return ENOSYS;
}
new_tcb->stackSize = attr.__mlibc_stacksize;
new_tcb->guardSize = attr.__mlibc_guardsize;
new_tcb->returnValueType = (returns_int) ? TcbThreadReturnValue::Integer : TcbThreadReturnValue::Pointer;
mlibc::sys_clone(new_tcb, &tid, stack);
*thread = reinterpret_cast<struct __mlibc_thread_data *>(new_tcb);
__atomic_store_n(&new_tcb->tid, tid, __ATOMIC_RELAXED);
mlibc::sys_futex_wake(&new_tcb->tid);
return 0;
}
int thread_join(struct __mlibc_thread_data *thread, void *ret) {
auto tcb = reinterpret_cast<Tcb *>(thread);
if (!__atomic_load_n(&tcb->isJoinable, __ATOMIC_ACQUIRE))
return EINVAL;
while (!__atomic_load_n(&tcb->didExit, __ATOMIC_ACQUIRE)) {
mlibc::sys_futex_wait(&tcb->didExit, 0, nullptr);
}
if(ret && tcb->returnValueType == TcbThreadReturnValue::Pointer)
*reinterpret_cast<void **>(ret) = tcb->returnValue.voidPtr;
else if(ret && tcb->returnValueType == TcbThreadReturnValue::Integer)
*reinterpret_cast<int *>(ret) = tcb->returnValue.intVal;
// FIXME: destroy tcb here, currently we leak it
return 0;
}
static constexpr size_t default_stacksize = 0x200000;
static constexpr size_t default_guardsize = 4096;
int thread_attr_init(struct __mlibc_threadattr *attr) {
*attr = __mlibc_threadattr{};
attr->__mlibc_stacksize = default_stacksize;
attr->__mlibc_guardsize = default_guardsize;
attr->__mlibc_detachstate = __MLIBC_THREAD_CREATE_JOINABLE;
return 0;
}
static constexpr unsigned int mutexRecursive = 1;
static constexpr unsigned int mutexErrorCheck = 2;
// TODO: either use uint32_t or determine the bit based on sizeof(int).
static constexpr unsigned int mutex_owner_mask = (static_cast<uint32_t>(1) << 30) - 1;
static constexpr unsigned int mutex_waiters_bit = static_cast<uint32_t>(1) << 31;
// Only valid for the internal __mlibc_m mutex of wrlocks.
static constexpr unsigned int mutex_excl_bit = static_cast<uint32_t>(1) << 30;
int thread_mutex_init(struct __mlibc_mutex *__restrict mutex,
const struct __mlibc_mutexattr *__restrict attr) {
auto type = attr ? attr->__mlibc_type : __MLIBC_THREAD_MUTEX_DEFAULT;
auto robust = attr ? attr->__mlibc_robust : __MLIBC_THREAD_MUTEX_STALLED;
auto protocol = attr ? attr->__mlibc_protocol : __MLIBC_THREAD_PRIO_NONE;
auto pshared = attr ? attr->__mlibc_pshared : __MLIBC_THREAD_PROCESS_PRIVATE;
mutex->__mlibc_state = 0;
mutex->__mlibc_recursion = 0;
mutex->__mlibc_flags = 0;
mutex->__mlibc_prioceiling = 0; // TODO: We don't implement this.
if(type == __MLIBC_THREAD_MUTEX_RECURSIVE) {
mutex->__mlibc_flags |= mutexRecursive;
}else if(type == __MLIBC_THREAD_MUTEX_ERRORCHECK) {
mutex->__mlibc_flags |= mutexErrorCheck;
}else{
__ensure(type == __MLIBC_THREAD_MUTEX_NORMAL);
}
// TODO: Other values aren't supported yet.
__ensure(robust == __MLIBC_THREAD_MUTEX_STALLED);
__ensure(protocol == __MLIBC_THREAD_PRIO_NONE);
__ensure(pshared == __MLIBC_THREAD_PROCESS_PRIVATE);
return 0;
}
int thread_mutex_destroy(struct __mlibc_mutex *mutex) {
__ensure(!mutex->__mlibc_state);
return 0;
}
int thread_mutex_lock(struct __mlibc_mutex *mutex) {
unsigned int this_tid = mlibc::this_tid();
unsigned int expected = 0;
while(true) {
if(!expected) {
// Try to take the mutex here.
if(__atomic_compare_exchange_n(&mutex->__mlibc_state,
&expected, this_tid, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE)) {
__ensure(!mutex->__mlibc_recursion);
mutex->__mlibc_recursion = 1;
return 0;
}
}else{
// If this (recursive) mutex is already owned by us, increment the recursion level.
if((expected & mutex_owner_mask) == this_tid) {
if(!(mutex->__mlibc_flags & mutexRecursive)) {
if (mutex->__mlibc_flags & mutexErrorCheck)
return EDEADLK;
else
mlibc::panicLogger() << "mlibc: pthread_mutex deadlock detected!"
<< frg::endlog;
}
++mutex->__mlibc_recursion;
return 0;
}
// Wait on the futex if the waiters flag is set.
if(expected & mutex_waiters_bit) {
int e = mlibc::sys_futex_wait((int *)&mutex->__mlibc_state, expected, nullptr);
// If the wait returns EAGAIN, that means that the mutex_waiters_bit was just unset by
// some other thread. In this case, we should loop back around.
if (e && e != EAGAIN)
mlibc::panicLogger() << "sys_futex_wait() failed with error code " << e << frg::endlog;
// Opportunistically try to take the lock after we wake up.
expected = 0;
}else{
// Otherwise we have to set the waiters flag first.
unsigned int desired = expected | mutex_waiters_bit;
if(__atomic_compare_exchange_n((int *)&mutex->__mlibc_state,
reinterpret_cast<int*>(&expected), desired, false, __ATOMIC_RELAXED, __ATOMIC_RELAXED))
expected = desired;
}
}
}
}
int thread_mutex_unlock(struct __mlibc_mutex *mutex) {
// Decrement the recursion level and unlock if we hit zero.
__ensure(mutex->__mlibc_recursion);
if(--mutex->__mlibc_recursion)
return 0;
auto flags = mutex->__mlibc_flags;
// Reset the mutex to the unlocked state.
auto state = __atomic_exchange_n(&mutex->__mlibc_state, 0, __ATOMIC_RELEASE);
// After this point the mutex is unlocked, and therefore we cannot access its contents as it
// may have been destroyed by another thread.
unsigned int this_tid = mlibc::this_tid();
if ((flags & mutexErrorCheck) && (state & mutex_owner_mask) != this_tid)
return EPERM;
if ((flags & mutexErrorCheck) && !(state & mutex_owner_mask))
return EINVAL;
__ensure((state & mutex_owner_mask) == this_tid);
if(state & mutex_waiters_bit) {
// Wake the futex if there were waiters. Since the mutex might not exist at this location
// anymore, we must conservatively ignore EACCES and EINVAL which may occur as a result.
int e = mlibc::sys_futex_wake((int *)&mutex->__mlibc_state);
__ensure(e >= 0 || e == EACCES || e == EINVAL);
}
return 0;
}
int thread_mutexattr_init(struct __mlibc_mutexattr *attr) {
attr->__mlibc_type = __MLIBC_THREAD_MUTEX_DEFAULT;
attr->__mlibc_robust = __MLIBC_THREAD_MUTEX_STALLED;
attr->__mlibc_pshared = __MLIBC_THREAD_PROCESS_PRIVATE;
attr->__mlibc_protocol = __MLIBC_THREAD_PRIO_NONE;
return 0;
}
int thread_mutexattr_destroy(struct __mlibc_mutexattr *attr) {
memset(attr, 0, sizeof(*attr));
return 0;
}
int thread_mutexattr_gettype(const struct __mlibc_mutexattr *__restrict attr, int *__restrict type) {
*type = attr->__mlibc_type;
return 0;
}
int thread_mutexattr_settype(struct __mlibc_mutexattr *attr, int type) {
if (type != __MLIBC_THREAD_MUTEX_NORMAL && type != __MLIBC_THREAD_MUTEX_ERRORCHECK
&& type != __MLIBC_THREAD_MUTEX_RECURSIVE)
return EINVAL;
attr->__mlibc_type = type;
return 0;
}
int thread_cond_init(struct __mlibc_cond *__restrict cond, const struct __mlibc_condattr *__restrict attr) {
auto clock = attr ? attr->__mlibc_clock : CLOCK_REALTIME;
auto pshared = attr ? attr->__mlibc_pshared : __MLIBC_THREAD_PROCESS_PRIVATE;
cond->__mlibc_clock = clock;
cond->__mlibc_flags = pshared;
__atomic_store_n(&cond->__mlibc_seq, 1, __ATOMIC_RELAXED);
return 0;
}
int thread_cond_destroy(struct __mlibc_cond *) {
return 0;
}
int thread_cond_broadcast(struct __mlibc_cond *cond) {
__atomic_fetch_add(&cond->__mlibc_seq, 1, __ATOMIC_RELEASE);
if(int e = mlibc::sys_futex_wake((int *)&cond->__mlibc_seq); e)
__ensure(!"sys_futex_wake() failed");
return 0;
}
int thread_cond_timedwait(struct __mlibc_cond *__restrict cond, __mlibc_mutex *__restrict mutex,
const struct timespec *__restrict abstime) {
// TODO: pshared isn't supported yet.
__ensure(cond->__mlibc_flags == 0);
constexpr long nanos_per_second = 1'000'000'000;
if (abstime && (abstime->tv_nsec < 0 || abstime->tv_nsec >= nanos_per_second))
return EINVAL;
auto seq = __atomic_load_n(&cond->__mlibc_seq, __ATOMIC_ACQUIRE);
// TODO: handle locking errors and cancellation properly.
while (true) {
if (thread_mutex_unlock(mutex))
__ensure(!"Failed to unlock the mutex");
int e;
if (abstime) {
// Adjust for the fact that sys_futex_wait accepts a *timeout*, but
// pthread_cond_timedwait accepts an *absolute time*.
// Note: mlibc::sys_clock_get is available unconditionally.
struct timespec now;
if (mlibc::sys_clock_get(cond->__mlibc_clock, &now.tv_sec, &now.tv_nsec))
__ensure(!"sys_clock_get() failed");
struct timespec timeout;
timeout.tv_sec = abstime->tv_sec - now.tv_sec;
timeout.tv_nsec = abstime->tv_nsec - now.tv_nsec;
// Check if abstime has already passed.
if (timeout.tv_sec < 0 || (timeout.tv_sec == 0 && timeout.tv_nsec < 0)) {
if (thread_mutex_lock(mutex))
__ensure(!"Failed to lock the mutex");
return ETIMEDOUT;
} else if (timeout.tv_nsec >= nanos_per_second) {
timeout.tv_nsec -= nanos_per_second;
timeout.tv_sec++;
__ensure(timeout.tv_nsec < nanos_per_second);
} else if (timeout.tv_nsec < 0) {
timeout.tv_nsec += nanos_per_second;
timeout.tv_sec--;
__ensure(timeout.tv_nsec >= 0);
}
e = mlibc::sys_futex_wait((int *)&cond->__mlibc_seq, seq, &timeout);
} else {
e = mlibc::sys_futex_wait((int *)&cond->__mlibc_seq, seq, nullptr);
}
if (thread_mutex_lock(mutex))
__ensure(!"Failed to lock the mutex");
// There are four cases to handle:
// 1. e == 0: this indicates a (potentially spurious) wakeup. The value of
// seq *must* be checked to distinguish these two cases.
// 2. e == EAGAIN: this indicates that the value of seq changed before we
// went to sleep. We don't need to check seq in this case.
// 3. e == EINTR: a signal was delivered. The man page allows us to choose
// whether to go to sleep again or to return 0, but we do the former
// to match other libcs.
// 4. e == ETIMEDOUT: this should only happen if abstime is set.
if (e == 0) {
auto cur_seq = __atomic_load_n(&cond->__mlibc_seq, __ATOMIC_ACQUIRE);
if (cur_seq > seq)
return 0;
} else if (e == EAGAIN) {
__ensure(__atomic_load_n(&cond->__mlibc_seq, __ATOMIC_ACQUIRE) > seq);
return 0;
} else if (e == EINTR) {
continue;
} else if (e == ETIMEDOUT) {
__ensure(abstime);
return ETIMEDOUT;
} else {
mlibc::panicLogger() << "sys_futex_wait() failed with error " << e << frg::endlog;
}
}
}
} // namespace mlibc
|