summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/log10.c
blob: 81026876b223d4f56d6c2542b18898d6105aa34d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/*
 * Return the base 10 logarithm of x.  See log.c for most comments.
 *
 * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
 * as in log.c, then combine and scale in extra precision:
 *    log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
 */

#include <math.h>
#include <stdint.h>

static const double
ivln10hi  = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
ivln10lo  = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */

double log10(double x)
{
	union {double f; uint64_t i;} u = {x};
	double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
	uint32_t hx;
	int k;

	hx = u.i>>32;
	k = 0;
	if (hx < 0x00100000 || hx>>31) {
		if (u.i<<1 == 0)
			return -1/(x*x);  /* log(+-0)=-inf */
		if (hx>>31)
			return (x-x)/0.0; /* log(-#) = NaN */
		/* subnormal number, scale x up */
		k -= 54;
		x *= 0x1p54;
		u.f = x;
		hx = u.i>>32;
	} else if (hx >= 0x7ff00000) {
		return x;
	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
		return 0;

	/* reduce x into [sqrt(2)/2, sqrt(2)] */
	hx += 0x3ff00000 - 0x3fe6a09e;
	k += (int)(hx>>20) - 0x3ff;
	hx = (hx&0x000fffff) + 0x3fe6a09e;
	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
	x = u.f;

	f = x - 1.0;
	hfsq = 0.5*f*f;
	s = f/(2.0+f);
	z = s*s;
	w = z*z;
	t1 = w*(Lg2+w*(Lg4+w*Lg6));
	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
	R = t2 + t1;

	/* See log2.c for details. */
	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
	hi = f - hfsq;
	u.f = hi;
	u.i &= (uint64_t)-1<<32;
	hi = u.f;
	lo = f - hi - hfsq + s*(hfsq+R);

	/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
	val_hi = hi*ivln10hi;
	dk = k;
	y = dk*log10_2hi;
	val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;

	/*
	 * Extra precision in for adding y is not strictly needed
	 * since there is no very large cancellation near x = sqrt(2) or
	 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
	 * with some parallelism and it reduces the error for many args.
	 */
	w = y + val_hi;
	val_lo += (y - w) + val_hi;
	val_hi = w;

	return val_lo + val_hi;
}