aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/jnf.c
blob: f63c062f32caf74b724f11e0ac97ece8da4d75b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
/*
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#define _GNU_SOURCE
#include "libm.h"

float jnf(int n, float x)
{
	uint32_t ix;
	int nm1, sign, i;
	float a, b, temp;

	GET_FLOAT_WORD(ix, x);
	sign = ix>>31;
	ix &= 0x7fffffff;
	if (ix > 0x7f800000) /* nan */
		return x;

	/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
	if (n == 0)
		return j0f(x);
	if (n < 0) {
		nm1 = -(n+1);
		x = -x;
		sign ^= 1;
	} else
		nm1 = n-1;
	if (nm1 == 0)
		return j1f(x);

	sign &= n;  /* even n: 0, odd n: signbit(x) */
	x = fabsf(x);
	if (ix == 0 || ix == 0x7f800000)  /* if x is 0 or inf */
		b = 0.0f;
	else if (nm1 < x) {
		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
		a = j0f(x);
		b = j1f(x);
		for (i=0; i<nm1; ){
			i++;
			temp = b;
			b = b*(2.0f*i/x) - a;
			a = temp;
		}
	} else {
		if (ix < 0x35800000) { /* x < 2**-20 */
			/* x is tiny, return the first Taylor expansion of J(n,x)
			 * J(n,x) = 1/n!*(x/2)^n  - ...
			 */
			if (nm1 > 8)  /* underflow */
				nm1 = 8;
			temp = 0.5f * x;
			b = temp;
			a = 1.0f;
			for (i=2; i<=nm1+1; i++) {
				a *= (float)i;    /* a = n! */
				b *= temp;        /* b = (x/2)^n */
			}
			b = b/a;
		} else {
			/* use backward recurrence */
			/*                      x      x^2      x^2
			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
			 *                      2n  - 2(n+1) - 2(n+2)
			 *
			 *                      1      1        1
			 *  (for large x)   =  ----  ------   ------   .....
			 *                      2n   2(n+1)   2(n+2)
			 *                      -- - ------ - ------ -
			 *                       x     x         x
			 *
			 * Let w = 2n/x and h=2/x, then the above quotient
			 * is equal to the continued fraction:
			 *                  1
			 *      = -----------------------
			 *                     1
			 *         w - -----------------
			 *                        1
			 *              w+h - ---------
			 *                     w+2h - ...
			 *
			 * To determine how many terms needed, let
			 * Q(0) = w, Q(1) = w(w+h) - 1,
			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
			 * When Q(k) > 1e4      good for single
			 * When Q(k) > 1e9      good for double
			 * When Q(k) > 1e17     good for quadruple
			 */
			/* determine k */
			float t,q0,q1,w,h,z,tmp,nf;
			int k;

			nf = nm1+1.0f;
			w = 2*nf/x;
			h = 2/x;
			z = w+h;
			q0 = w;
			q1 = w*z - 1.0f;
			k = 1;
			while (q1 < 1.0e4f) {
				k += 1;
				z += h;
				tmp = z*q1 - q0;
				q0 = q1;
				q1 = tmp;
			}
			for (t=0.0f, i=k; i>=0; i--)
				t = 1.0f/(2*(i+nf)/x-t);
			a = t;
			b = 1.0f;
			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
			 *  Hence, if n*(log(2n/x)) > ...
			 *  single 8.8722839355e+01
			 *  double 7.09782712893383973096e+02
			 *  long double 1.1356523406294143949491931077970765006170e+04
			 *  then recurrent value may overflow and the result is
			 *  likely underflow to zero
			 */
			tmp = nf*logf(fabsf(w));
			if (tmp < 88.721679688f) {
				for (i=nm1; i>0; i--) {
					temp = b;
					b = 2.0f*i*b/x - a;
					a = temp;
				}
			} else {
				for (i=nm1; i>0; i--){
					temp = b;
					b = 2.0f*i*b/x - a;
					a = temp;
					/* scale b to avoid spurious overflow */
					if (b > 0x1p60f) {
						a /= b;
						t /= b;
						b = 1.0f;
					}
				}
			}
			z = j0f(x);
			w = j1f(x);
			if (fabsf(z) >= fabsf(w))
				b = t*z/b;
			else
				b = t*w/a;
		}
	}
	return sign ? -b : b;
}

float ynf(int n, float x)
{
	uint32_t ix, ib;
	int nm1, sign, i;
	float a, b, temp;

	GET_FLOAT_WORD(ix, x);
	sign = ix>>31;
	ix &= 0x7fffffff;
	if (ix > 0x7f800000) /* nan */
		return x;
	if (sign && ix != 0) /* x < 0 */
		return 0/0.0f;
	if (ix == 0x7f800000)
		return 0.0f;

	if (n == 0)
		return y0f(x);
	if (n < 0) {
		nm1 = -(n+1);
		sign = n&1;
	} else {
		nm1 = n-1;
		sign = 0;
	}
	if (nm1 == 0)
		return sign ? -y1f(x) : y1f(x);

	a = y0f(x);
	b = y1f(x);
	/* quit if b is -inf */
	GET_FLOAT_WORD(ib,b);
	for (i = 0; i < nm1 && ib != 0xff800000; ) {
		i++;
		temp = b;
		b = (2.0f*i/x)*b - a;
		GET_FLOAT_WORD(ib, b);
		a = temp;
	}
	return sign ? -b : b;
}