aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/generic/math-stubs.ignored-cpp
blob: 9be985fae1e633acbfea0b734beb9c45bdfc6ee7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

#include <math.h>
#include <immintrin.h>

#include <bits/ensure.h>

#include <stdint.h>

#include <mlibc/debug.hpp>

// Taken from musl. See musl for the license/copyright!
#define FORCE_EVAL(x) do {                        \
	if (sizeof(x) == sizeof(float)) {         \
		volatile float __x;               \
		__x = (x);                        \
	} else if (sizeof(x) == sizeof(double)) { \
		volatile double __x;              \
		__x = (x);                        \
	} else {                                  \
		volatile long double __x;         \
		__x = (x);                        \
	}                                         \
} while(0)

namespace ieee754 {

struct SoftDouble {
	typedef uint64_t Bits;
	typedef uint64_t Mantissa;
	typedef int16_t Exp;

	static constexpr int kMantissaBits = 52;
	static constexpr int kExpBits = 11;
	static constexpr int kBias = 1023;
	
	// this exponent represents zeros (when mantissa = 0) and subnormals (when mantissa != 0)
	static constexpr Exp kSubExp = -kBias;
	// this exponent represents infinities (when mantissa = 0) and NaNs (when mantissa != 0)
	static constexpr Exp kInfExp = ((Exp(1) << kExpBits) - 1) - kBias;

	static constexpr Bits kMantissaMask = (Bits(1) << kMantissaBits) - 1;
	static constexpr Bits kExpMask = ((Bits(1) << kExpBits) - 1) << kMantissaBits;
	static constexpr Bits kSignMask = Bits(1) << (kMantissaBits + kExpBits);

	SoftDouble(bool negative, Mantissa mantissa, Exp exp)
	: negative(negative), mantissa(mantissa), exp(exp) {
//		mlibc::infoLogger.log() << "(" << (int)negative << ", " << (void *)mantissa
//				<< ", " << exp << ")" << frg::end_log;
		__ensure(mantissa < (Mantissa(1) << kMantissaBits));
		__ensure((exp + kBias) >= 0);
		__ensure((exp + kBias) < (Exp(1) << kExpBits));
	}

	const bool negative;
	const Mantissa mantissa;
	const Exp exp;
};

template<typename F>
using Bits = typename F::Bits;

template<typename F>
using Mantissa = typename F::Mantissa;

template<typename F>
using Exp = typename F::Exp;

template<typename F>
bool isZero(F x) {
	return x.exp == F::kSubExp && x.mantissa == 0;
}

template<typename F>
bool isFinite(F x) {
	return x.exp != F::kInfExp;
}

// --------------------------------------------------------
// Soft float operations
// --------------------------------------------------------

template<typename F>
F constZero(bool negative) {
	return F(negative, 0, F::kSubExp);
}

template<typename F>
F constOne(bool negative) {
	return F(negative, 0, 0);
}

template<typename F>
F floor(F x) {
	if(!isFinite(x) || isZero(x)) // TODO: need exception for the not-finite case?
		return x;
	
	if(x.exp > F::kMantissaBits)
		return x; // x is already integral
	
	if(x.exp < 0) {
		// TODO: raise inexact
		// return -1 or +0
		return x.negative ? constOne<F>(true) : constZero<F>(false);
	}
	
	Mantissa<F> mask = F::kMantissaMask >> x.exp;
	if(!(x.mantissa & mask))
		return x; // x is already integral
	
	// TODO: raise inexact
	Mantissa<F> integral_position = (Mantissa<F>(1) << F::kMantissaBits) >> x.exp;
	if(x.negative)
		return F(true, (x.mantissa + integral_position) & (~mask), x.exp);
	return F(false, x.mantissa & (~mask), x.exp);
}

template<typename F>
F ceil(F x) {
	if(!isFinite(x) || isZero(x)) // TODO: need exception for the not-finite case?
		return x;
	
	if(x.exp > F::kMantissaBits)
		return x; // x is already integral
	
	if(x.exp < 0) {
		// TODO: raise inexact
		// return -0 or +1
		return x.negative ? constZero<F>(true) : constOne<F>(false);
	}
	
	Mantissa<F> mask = F::kMantissaMask >> x.exp;
	if(!(x.mantissa & mask))
		return x; // x is already integral
	
	// TODO: raise inexact
	Mantissa<F> integral_position = (Mantissa<F>(1) << F::kMantissaBits) >> x.exp;
	if(x.negative)
		return F(true, x.mantissa & (~mask), x.exp);
	return F(false, (x.mantissa + integral_position) & (~mask), x.exp);
}

// --------------------------------------------------------
// Soft float <-> bit string conversion functions
// --------------------------------------------------------

template<typename F>
uint64_t compileBits(F soft) {
	auto bits = Bits<F>(soft.mantissa) | ((Bits<F>(soft.exp) + F::kBias) << soft.kMantissaBits);
	return soft.negative ? (F::kSignMask | bits) : bits;
}

SoftDouble extractBits(uint64_t bits) {
	return SoftDouble(bits & SoftDouble::kSignMask, bits & SoftDouble::kMantissaMask,
			((bits & SoftDouble::kExpMask) >> SoftDouble::kMantissaBits) - SoftDouble::kBias);
}

// --------------------------------------------------------
// Soft float -> native float conversion functions
// --------------------------------------------------------

union DoubleBits {
	double fp;
	uint64_t bits;
};

double compileNative(SoftDouble soft) {
	DoubleBits word;
	word.bits = compileBits(soft);
	return word.fp;
}

SoftDouble extractNative(double native) {
	DoubleBits word;
	word.fp = native;
	return extractBits(word.bits);
}

} // namespace ieee754

int __mlibc_fpclassify(double x) {
	return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, x);
}
int __mlibc_fpclassifyf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
int __mlibc_fpclassifyl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double acos(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float acosf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double acosl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double asin(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float asinf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double asinl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double atan(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float atanf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double atanl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double atan2(double x, double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float atan2f(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double atan2l(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

// Taken from musl. See musl for the license/copyright!
float __sindf(double x) {
	/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
	static const double S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
			S2 = 0x111110896efbb2.0p-59, /*  0.0083333293858894631756 */
			S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
			S4 = 0x16cd878c3b46a7.0p-71; /*  0.0000027183114939898219064 */

	double r, s, w, z;

	/* Try to optimize for parallel evaluation as in __tandf.c. */
	z = x*x;
	w = z*z;
	r = S3 + z*S4;
	s = z*x;
	return (x + s*(S1 + z*S2)) + s*w*r;
}

// Taken from musl. See musl for the license/copyright!
float __cosdf(double x) {
	/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
	static const double C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
			C1 = 0x155553e1053a42.0p-57, /*  0.0416666233237390631894 */
			C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
			C3 = 0x199342e0ee5069.0p-68; /*  0.0000243904487962774090654 */

	double r, w, z;

	/* Try to optimize for parallel evaluation as in __tandf.c. */
	z = x*x;
	w = z*z;
	r = C2+z*C3;
	return ((1.0+z*C0) + w*C1) + (w*z)*r;
}

float __tandf(double x, int odd) {
	/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
	static const double T[] = {
		0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
		0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
		0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
		0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
		0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
		0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
	};

	double z,r,w,s,t,u;

	z = x*x;
	/*
	 * Split up the polynomial into small independent terms to give
	 * opportunities for parallel evaluation.  The chosen splitting is
	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
	 * relative to Horner's method on sequential machines.
	 *
	 * We add the small terms from lowest degree up for efficiency on
	 * non-sequential machines (the lowest degree terms tend to be ready
	 * earlier).  Apart from this, we don't care about order of
	 * operations, and don't need to to care since we have precision to
	 * spare.  However, the chosen splitting is good for accuracy too,
	 * and would give results as accurate as Horner's method if the
	 * small terms were added from highest degree down.
	 */
	r = T[4] + z*T[5];
	t = T[2] + z*T[3];
	w = z*z;
	s = z*x;
	u = T[0] + z*T[1];
	r = (x + s*u) + (s*w)*(t + w*r);
	return odd ? -1.0/r : r;
}

#define DBL_EPSILON 2.22044604925031308085e-16
#define EPS DBL_EPSILON

/* Get a 32 bit int from a float.  */
#define GET_FLOAT_WORD(w,d)                       \
do {                                              \
  union {float f; uint32_t i;} __u;               \
  __u.f = (d);                                    \
  (w) = __u.i;                                    \
} while (0)

/* Get the more significant 32 bit int from a double.  */
#define GET_HIGH_WORD(hi,d)                       \
do {                                              \
  union {double f; uint64_t i;} __u;              \
  __u.f = (d);                                    \
  (hi) = __u.i >> 32;                             \
} while (0)

/* Get the less significant 32 bit int from a double.  */
#define GET_LOW_WORD(lo,d)                        \
do {                                              \
  union {double f; uint64_t i;} __u;              \
  __u.f = (d);                                    \
  (lo) = (uint32_t)__u.i;                         \
} while (0)

// Taken from musl. See musl for the license/copyright!
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
{
	static const int init_jk[] = {3,4,4,6}; /* initial value for jk */

	/*
	 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
	 *
	 *              integer array, contains the (24*i)-th to (24*i+23)-th
	 *              bit of 2/pi after binary point. The corresponding
	 *              floating value is
	 *
	 *                      ipio2[i] * 2^(-24(i+1)).
	 *
	 * NB: This table must have at least (e0-3)/24 + jk terms.
	 *     For quad precision (e0 <= 16360, jk = 6), this is 686.
	 */
	static const int32_t ipio2[] = {
	0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
	0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
	0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
	0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
	0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
	0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
	0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
	0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
	0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
	0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
	0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,

	#if LDBL_MAX_EXP > 1024
	0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
	0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
	0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
	0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
	0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
	0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
	0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
	0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
	0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
	0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
	0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
	0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
	0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
	0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
	0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
	0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
	0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
	0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
	0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
	0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
	0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
	0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
	0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
	0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
	0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
	0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
	0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
	0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
	0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
	0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
	0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
	0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
	0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
	0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
	0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
	0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
	0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
	0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
	0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
	0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
	0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
	0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
	0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
	0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
	0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
	0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
	0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
	0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
	0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
	0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
	0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
	0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
	0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
	0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
	0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
	0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
	0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
	0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
	0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
	0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
	0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
	0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
	0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
	0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
	0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
	0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
	0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
	0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
	0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
	0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
	0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
	0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
	0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
	0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
	0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
	0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
	0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
	0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
	0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
	0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
	0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
	0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
	0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
	0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
	0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
	0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
	0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
	0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
	0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
	0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
	0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
	0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
	0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
	0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
	0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
	0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
	0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
	0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
	0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
	0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
	0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
	0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
	0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
	0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
	#endif
	};

	static const double PIo2[] = {
	  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
	  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
	  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
	  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
	  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
	  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
	  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
	  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
	};

	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
	double z,fw,f[20],fq[20],q[20];

	/* initialize jk*/
	jk = init_jk[prec];
	jp = jk;

	/* determine jx,jv,q0, note that 3>q0 */
	jx = nx-1;
	jv = (e0-3)/24;  if(jv<0) jv=0;
	q0 = e0-24*(jv+1);

	/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
	j = jv-jx; m = jx+jk;
	for (i=0; i<=m; i++,j++)
		f[i] = j<0 ? 0.0 : (double)ipio2[j];

	/* compute q[0],q[1],...q[jk] */
	for (i=0; i<=jk; i++) {
		for (j=0,fw=0.0; j<=jx; j++)
			fw += x[j]*f[jx+i-j];
		q[i] = fw;
	}

	jz = jk;
recompute:
	/* distill q[] into iq[] reversingly */
	for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
		fw    = (double)(int32_t)(0x1p-24*z);
		iq[i] = (int32_t)(z - 0x1p24*fw);
		z     = q[j-1]+fw;
	}

	/* compute n */
	z  = scalbn(z,q0);       /* actual value of z */
	z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
	n  = (int32_t)z;
	z -= (double)n;
	ih = 0;
	if (q0 > 0) {  /* need iq[jz-1] to determine n */
		i  = iq[jz-1]>>(24-q0); n += i;
		iq[jz-1] -= i<<(24-q0);
		ih = iq[jz-1]>>(23-q0);
	}
	else if (q0 == 0) ih = iq[jz-1]>>23;
	else if (z >= 0.5) ih = 2;

	if (ih > 0) {  /* q > 0.5 */
		n += 1; carry = 0;
		for (i=0; i<jz; i++) {  /* compute 1-q */
			j = iq[i];
			if (carry == 0) {
				if (j != 0) {
					carry = 1;
					iq[i] = 0x1000000 - j;
				}
			} else
				iq[i] = 0xffffff - j;
		}
		if (q0 > 0) {  /* rare case: chance is 1 in 12 */
			switch(q0) {
			case 1:
				iq[jz-1] &= 0x7fffff; break;
			case 2:
				iq[jz-1] &= 0x3fffff; break;
			}
		}
		if (ih == 2) {
			z = 1.0 - z;
			if (carry != 0)
				z -= scalbn(1.0,q0);
		}
	}

	/* check if recomputation is needed */
	if (z == 0.0) {
		j = 0;
		for (i=jz-1; i>=jk; i--) j |= iq[i];
		if (j == 0) {  /* need recomputation */
			for (k=1; iq[jk-k]==0; k++);  /* k = no. of terms needed */

			for (i=jz+1; i<=jz+k; i++) {  /* add q[jz+1] to q[jz+k] */
				f[jx+i] = (double)ipio2[jv+i];
				for (j=0,fw=0.0; j<=jx; j++)
					fw += x[j]*f[jx+i-j];
				q[i] = fw;
			}
			jz += k;
			goto recompute;
		}
	}

	/* chop off zero terms */
	if (z == 0.0) {
		jz -= 1;
		q0 -= 24;
		while (iq[jz] == 0) {
			jz--;
			q0 -= 24;
		}
	} else { /* break z into 24-bit if necessary */
		z = scalbn(z,-q0);
		if (z >= 0x1p24) {
			fw = (double)(int32_t)(0x1p-24*z);
			iq[jz] = (int32_t)(z - 0x1p24*fw);
			jz += 1;
			q0 += 24;
			iq[jz] = (int32_t)fw;
		} else
			iq[jz] = (int32_t)z;
	}

	/* convert integer "bit" chunk to floating-point value */
	fw = scalbn(1.0,q0);
	for (i=jz; i>=0; i--) {
		q[i] = fw*(double)iq[i];
		fw *= 0x1p-24;
	}

	/* compute PIo2[0,...,jp]*q[jz,...,0] */
	for(i=jz; i>=0; i--) {
		for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
			fw += PIo2[k]*q[i+k];
		fq[jz-i] = fw;
	}

	/* compress fq[] into y[] */
	switch(prec) {
	case 0:
		fw = 0.0;
		for (i=jz; i>=0; i--)
			fw += fq[i];
		y[0] = ih==0 ? fw : -fw;
		break;
	case 1:
	case 2:
		fw = 0.0;
		for (i=jz; i>=0; i--)
			fw += fq[i];
		// TODO: drop excess precision here once double_t is used
		fw = (double)fw;
		y[0] = ih==0 ? fw : -fw;
		fw = fq[0]-fw;
		for (i=1; i<=jz; i++)
			fw += fq[i];
		y[1] = ih==0 ? fw : -fw;
		break;
	case 3:  /* painful */
		for (i=jz; i>0; i--) {
			fw      = fq[i-1]+fq[i];
			fq[i]  += fq[i-1]-fw;
			fq[i-1] = fw;
		}
		for (i=jz; i>1; i--) {
			fw      = fq[i-1]+fq[i];
			fq[i]  += fq[i-1]-fw;
			fq[i-1] = fw;
		}
		for (fw=0.0,i=jz; i>=2; i--)
			fw += fq[i];
		if (ih==0) {
			y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
		} else {
			y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
		}
	}
	return n&7;
}

int __rem_pio2f(float x, double *y) {
	/*
	 * invpio2:  53 bits of 2/pi
	 * pio2_1:   first 25 bits of pi/2
	 * pio2_1t:  pi/2 - pio2_1
	 */
	static const double toint = 1.5/EPS,
			invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
			pio2_1  = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
			pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */

	union {float f; uint32_t i;} u = {x};
	double tx[1],ty[1];
	double fn;
	uint32_t ix;
	int n, sign, e0;

	ix = u.i & 0x7fffffff;
	/* 25+53 bit pi is good enough for medium size */
	if (ix < 0x4dc90fdb) {  /* |x| ~< 2^28*(pi/2), medium size */
		/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
		fn = (double)x*invpio2 + toint - toint;
		n  = (int32_t)fn;
		*y = x - fn*pio2_1 - fn*pio2_1t;
		return n;
	}
	if(ix>=0x7f800000) {  /* x is inf or NaN */
		*y = x-x;
		return 0;
	}
	/* scale x into [2^23, 2^24-1] */
	sign = u.i>>31;
	e0 = (ix>>23) - (0x7f+23);  /* e0 = ilogb(|x|)-23, positive */
	u.i = ix - (e0<<23);
	tx[0] = u.f;
	n  =  __rem_pio2_large(tx,ty,e0,1,0);
	if (sign) {
		*y = -ty[0];
		return -n;
	}
	*y = ty[0];
	return n;
}

double cos(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
// Taken from musl. See musl for the license/copyright!
float cosf(float x) {
	/* Small multiples of pi/2 rounded to double precision. */
	static const double c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
			c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
			c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
			c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */

	double y;
	uint32_t ix;
	unsigned n, sign;

	GET_FLOAT_WORD(ix, x);
	sign = ix >> 31;
	ix &= 0x7fffffff;

	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
		if (ix < 0x39800000) {  /* |x| < 2**-12 */
			/* raise inexact if x != 0 */
			FORCE_EVAL(x + 0x1p120f);
			return 1.0f;
		}
		return __cosdf(x);
	}
	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
		if (ix > 0x4016cbe3)  /* |x|  ~> 3*pi/4 */
			return -__cosdf(sign ? x+c2pio2 : x-c2pio2);
		else {
			if (sign)
				return __sindf(x + c1pio2);
			else
				return __sindf(c1pio2 - x);
		}
	}
	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
		if (ix > 0x40afeddf)  /* |x| ~> 7*pi/4 */
			return __cosdf(sign ? x+c4pio2 : x-c4pio2);
		else {
			if (sign)
				return __sindf(-x - c3pio2);
			else
				return __sindf(x - c3pio2);
		}
	}

	/* cos(Inf or NaN) is NaN */
	if (ix >= 0x7f800000)
		return x-x;

	/* general argument reduction needed */
	n = __rem_pio2f(x,&y);
	switch (n&3) {
	case 0: return  __cosdf(y);
	case 1: return  __sindf(-y);
	case 2: return -__cosdf(y);
	default:
		return  __sindf(y);
	}
}
long double cosl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double sin(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
// Taken from musl. See musl for the license/copyright!
float sinf(float x) {
	/* Small multiples of pi/2 rounded to double precision. */
	static const double s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
		s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
		s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
		s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */

	double y;
	uint32_t ix;
	int n, sign;

	GET_FLOAT_WORD(ix, x);
	sign = ix >> 31;
	ix &= 0x7fffffff;

	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
		if (ix < 0x39800000) {  /* |x| < 2**-12 */
			/* raise inexact if x!=0 and underflow if subnormal */
			FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
			return x;
		}
		return __sindf(x);
	}
	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
		if (ix <= 0x4016cbe3) {  /* |x| ~<= 3pi/4 */
			if (sign)
				return -__cosdf(x + s1pio2);
			else
				return __cosdf(x - s1pio2);
		}
		return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
	}
	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
		if (ix <= 0x40afeddf) {  /* |x| ~<= 7*pi/4 */
			if (sign)
				return __cosdf(x + s3pio2);
			else
				return -__cosdf(x - s3pio2);
		}
		return __sindf(sign ? x + s4pio2 : x - s4pio2);
	}

	/* sin(Inf or NaN) is NaN */
	if (ix >= 0x7f800000)
		return x - x;

	/* general argument reduction needed */
	n = __rem_pio2f(x, &y);
	switch (n&3) {
	case 0: return  __sindf(y);
	case 1: return  __cosdf(y);
	case 2: return  __sindf(-y);
	default:
		return -__cosdf(y);
	}
}
long double sinl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double tan(double x) {
	mlibc::infoLogger() << "mlibc: tan() is not precise" << frg::endlog;
	return tanf(x);
}
// Taken from musl. See musl for the license/copyright!
float tanf(float x) {
	/* Small multiples of pi/2 rounded to double precision. */
	static const double t1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
			t2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
			t3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
			t4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */

	double y;
	uint32_t ix;
	unsigned n, sign;

	GET_FLOAT_WORD(ix, x);
	sign = ix >> 31;
	ix &= 0x7fffffff;

	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
		if (ix < 0x39800000) {  /* |x| < 2**-12 */
			/* raise inexact if x!=0 and underflow if subnormal */
			FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
			return x;
		}
		return __tandf(x, 0);
	}
	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
		if (ix <= 0x4016cbe3)  /* |x| ~<= 3pi/4 */
			return __tandf((sign ? x+t1pio2 : x-t1pio2), 1);
		else
			return __tandf((sign ? x+t2pio2 : x-t2pio2), 0);
	}
	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
		if (ix <= 0x40afeddf)  /* |x| ~<= 7*pi/4 */
			return __tandf((sign ? x+t3pio2 : x-t3pio2), 1);
		else
			return __tandf((sign ? x+t4pio2 : x-t4pio2), 0);
	}

	/* tan(Inf or NaN) is NaN */
	if (ix >= 0x7f800000)
		return x - x;

	/* argument reduction */
	n = __rem_pio2f(x, &y);
	return __tandf(y, n&1);
}
long double tanl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double acosh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float acoshf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double acoshl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double asinh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float asinhf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double asinhl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double atanh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float atanhf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double atanhl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double cosh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float coshf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double coshl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double sinh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float sinhf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double sinhl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double tanh(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float tanhf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double tanhl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double exp(double x) {
	static const double half[2] = {0.5,-0.5},
			ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
			ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
			invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
			P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
			P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
			P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
			P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
			P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */

	double hi, lo, c, xx, y;
	int k, sign;
	uint32_t hx;

	GET_HIGH_WORD(hx, x);
	sign = hx>>31;
	hx &= 0x7fffffff;  /* high word of |x| */

	/* special cases */
	if (hx >= 0x4086232b) {  /* if |x| >= 708.39... */
		if (isnan(x))
			return x;
		if (x > 709.782712893383973096) {
			/* overflow if x!=inf */
			x *= 0x1p1023;
			return x;
		}
		if (x < -708.39641853226410622) {
			/* underflow if x!=-inf */
			FORCE_EVAL((float)(-0x1p-149/x));
			if (x < -745.13321910194110842)
				return 0;
		}
	}

	/* argument reduction */
	if (hx > 0x3fd62e42) {  /* if |x| > 0.5 ln2 */
		if (hx >= 0x3ff0a2b2)  /* if |x| >= 1.5 ln2 */
			k = (int)(invln2*x + half[sign]);
		else
			k = 1 - sign - sign;
		hi = x - k*ln2hi;  /* k*ln2hi is exact here */
		lo = k*ln2lo;
		x = hi - lo;
	} else if (hx > 0x3e300000)  {  /* if |x| > 2**-28 */
		k = 0;
		hi = x;
		lo = 0;
	} else {
		/* inexact if x!=0 */
		FORCE_EVAL(0x1p1023 + x);
		return 1 + x;
	}

	/* x is now in primary range */
	xx = x*x;
	c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
	y = 1 + (x*c/(2-c) - lo + hi);
	if (k == 0)
		return y;
	return scalbn(y, k);
}
float expf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double expl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double exp2(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
// Taken from musl. See musl for the license/copyright!
float exp2f(float x) {
	constexpr int TBLSIZE = 16;

	constexpr float redux = 0x1.8p23f / TBLSIZE;
	constexpr float P1 = 0x1.62e430p-1f;
	constexpr float P2 = 0x1.ebfbe0p-3f;
	constexpr float P3 = 0x1.c6b348p-5f;
	constexpr float P4 = 0x1.3b2c9cp-7f;

	constexpr double exp2ft[TBLSIZE] = {
		0x1.6a09e667f3bcdp-1,
		0x1.7a11473eb0187p-1,
		0x1.8ace5422aa0dbp-1,
		0x1.9c49182a3f090p-1,
		0x1.ae89f995ad3adp-1,
		0x1.c199bdd85529cp-1,
		0x1.d5818dcfba487p-1,
		0x1.ea4afa2a490dap-1,
		0x1.0000000000000p+0,
		0x1.0b5586cf9890fp+0,
		0x1.172b83c7d517bp+0,
		0x1.2387a6e756238p+0,
		0x1.306fe0a31b715p+0,
		0x1.3dea64c123422p+0,
		0x1.4bfdad5362a27p+0,
		0x1.5ab07dd485429p+0,
	};

	double t, r, z;
	union {float f; uint32_t i;} u = {x};
	union {double f; uint64_t i;} uk;
	uint32_t ix, i0, k;

	/* Filter out exceptional cases. */
	ix = u.i & 0x7fffffff;
	if (ix > 0x42fc0000) {  /* |x| > 126 */
		if (ix > 0x7f800000) /* NaN */
			return x;
		if (u.i >= 0x43000000 && u.i < 0x80000000) {  /* x >= 128 */
			x *= 0x1p127f;
			return x;
		}
		if (u.i >= 0x80000000) {  /* x < -126 */
			if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
				FORCE_EVAL(-0x1p-149f/x);
			if (u.i >= 0xc3160000)  /* x <= -150 */
				return 0;
		}
	} else if (ix <= 0x33000000) {  /* |x| <= 0x1p-25 */
		return 1.0f + x;
	}

	/* Reduce x, computing z, i0, and k. */
	u.f = x + redux;
	i0 = u.i;
	i0 += TBLSIZE / 2;
	k = i0 / TBLSIZE;
	uk.i = (uint64_t)(0x3ff + k)<<52;
	i0 &= TBLSIZE - 1;
	u.f -= redux;
	z = x - u.f;
	/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
	r = exp2ft[i0];
	t = r * z;
	r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);

	/* Scale by 2**k */
	return r * uk.f;
}
long double exp2l(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double expm1(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float expm1f(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double expm1l(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double frexp(double x, int *power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float frexpf(float x, int *power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double frexpl(long double x, int *power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double ilogb(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float ilogbf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double ilogbl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double ldexp(double x, int power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float ldexpf(float x, int power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double ldexpl(long double x, int power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double log(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float logf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double logl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double log10(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float log10f(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double log10l(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double log1p(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float log1pf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double log1pl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

// Taken from musl. See musl for the license/copyright!
double log2(double x) {
	static const double
		ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
		ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
		Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
		Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
		Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
		Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
		Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
		Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
		Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */

	union {double f; uint64_t i;} u = {x};
	double hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
	uint32_t hx;
	int k;

	hx = u.i>>32;
	k = 0;
	if (hx < 0x00100000 || hx>>31) {
		if (u.i<<1 == 0)
			return -1/(x*x);  /* log(+-0)=-inf */
		if (hx>>31)
			return (x-x)/0.0; /* log(-#) = NaN */
		/* subnormal number, scale x up */
		k -= 54;
		x *= 0x1p54;
		u.f = x;
		hx = u.i>>32;
	} else if (hx >= 0x7ff00000) {
		return x;
	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
		return 0;

	/* reduce x into [sqrt(2)/2, sqrt(2)] */
	hx += 0x3ff00000 - 0x3fe6a09e;
	k += (int)(hx>>20) - 0x3ff;
	hx = (hx&0x000fffff) + 0x3fe6a09e;
	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
	x = u.f;

	f = x - 1.0;
	hfsq = 0.5*f*f;
	s = f/(2.0+f);
	z = s*s;
	w = z*z;
	t1 = w*(Lg2+w*(Lg4+w*Lg6));
	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
	R = t2 + t1;

	/*
	 * f-hfsq must (for args near 1) be evaluated in extra precision
	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
	 * This is fairly efficient since f-hfsq only depends on f, so can
	 * be evaluated in parallel with R.  Not combining hfsq with R also
	 * keeps R small (though not as small as a true `lo' term would be),
	 * so that extra precision is not needed for terms involving R.
	 *
	 * Compiler bugs involving extra precision used to break Dekker's
	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
	 * or the multi-precision calculations were avoided when double_t
	 * has extra precision.  These problems are now automatically
	 * avoided as a side effect of the optimization of combining the
	 * Dekker splitting step with the clear-low-bits step.
	 *
	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
	 * precision to avoid a very large cancellation when x is very near
	 * these values.  Unlike the above cancellations, this problem is
	 * specific to base 2.  It is strange that adding +-1 is so much
	 * harder than adding +-ln2 or +-log10_2.
	 *
	 * This uses Dekker's theorem to normalize y+val_hi, so the
	 * compiler bugs are back in some configurations, sigh.  And I
	 * don't want to used double_t to avoid them, since that gives a
	 * pessimization and the support for avoiding the pessimization
	 * is not yet available.
	 *
	 * The multi-precision calculations for the multiplications are
	 * routine.
	 */

	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
	hi = f - hfsq;
	u.f = hi;
	u.i &= (uint64_t)-1<<32;
	hi = u.f;
	lo = f - hi - hfsq + s*(hfsq+R);

	val_hi = hi*ivln2hi;
	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;

	/* spadd(val_hi, val_lo, y), except for not using double_t: */
	y = k;
	w = y + val_hi;
	val_lo += (y - w) + val_hi;
	val_hi = w;

	return val_lo + val_hi;
}
float log2f(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double log2l(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double logb(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float logbf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double logbl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double modf(double x, double *integral) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float modff(float x, float *integral) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double modfl(long double x, long double *integral) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double scalbn(double x, int n) {
	union {double f; uint64_t i;} u;
	double y = x;

	if (n > 1023) {
		y *= 0x1p1023;
		n -= 1023;
		if (n > 1023) {
			y *= 0x1p1023;
			n -= 1023;
			if (n > 1023)
				n = 1023;
		}
	} else if (n < -1022) {
		/* make sure final n < -53 to avoid double
		   rounding in the subnormal range */
		y *= 0x1p-1022 * 0x1p53;
		n += 1022 - 53;
		if (n < -1022) {
			y *= 0x1p-1022 * 0x1p53;
			n += 1022 - 53;
			if (n < -1022)
				n = -1022;
		}
	}
	u.i = (uint64_t)(0x3ff+n)<<52;
	x = y * u.f;
	return x;
}
float scalbnf(float x, int power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double scalbnl(long double x, int power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double scalbln(double x, long power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float scalblnf(float x, long power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double scalblnl(long double x, long power) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double cbrt(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float cbrtf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double cbrtl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double fabs(double x) {
	return signbit(x) ? -x : x;
}
float fabsf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double fabsl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double hypot(double x, double y) {
	__ensure(isfinite(x));
	__ensure(isfinite(y));
	// TODO: fix exception handling
	double u = fabs(x);
	double v = fabs(y);
	if(u > v)
		return u * sqrt(1 + (v / u) * (v / u));
	return v * sqrt(1 + (u / v) * (u / v));
}
float hypotf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double hypotl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double pow(double x, double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float powf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double powl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double sqrt(double x) {
	auto sse_x = _mm_set_sd(x);
	return _mm_cvtsd_f64(_mm_sqrt_sd(sse_x, sse_x));
}
float sqrtf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double sqrtl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double erf(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float erff(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double erfl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double erfc(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float erfcf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double erfcl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double lgamma(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float lgammaf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double lgammal(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double tgamma(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float tgammaf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double tgammal(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double ceil(double x) {
	auto soft_x = ieee754::extractNative(x);
	auto result = ieee754::ceil(soft_x);
	return ieee754::compileNative(result);
}
float ceilf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double ceill(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double floor(double x) {
	auto soft_x = ieee754::extractNative(x);
	auto result = ieee754::floor(soft_x);
	return ieee754::compileNative(result);
}
float floorf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double floorl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double nearbyint(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float nearbyintf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double nearbyintl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double rint(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float rintf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double rintl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

long lrint(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long lrintf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long lrintl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

long long llrint(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long long llrintf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long long llrintl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double round(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float roundf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double roundl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

long lround(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long lroundf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long lroundl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

long long llround(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long long llroundf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long long llroundl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double trunc(double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float truncf(float x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double truncl(long double x) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double fmod(double x, double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float fmodf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double fmodl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double remainder(double x, double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float remainderf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double remainderl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double remquo(double x, double y, int *quotient) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float remquof(float x, float y, int *quotient) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double remquol(long double x, long double y, int *quotient) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double copysign(double x, double sign) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float copysignf(float x, float sign) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double copysignl(long double x, long double sign) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double nan(const char *tag) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float nanf(const char *tag) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double nanl(const char *tag) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double nextafter(double x, double dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float nextafterf(float x, float dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double nextafterl(long double x, long double dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double nexttoward(double x, long double dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float nexttowardf(float x, long double dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double nexttowardl(long double x, long double dir) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double fdim(double x, double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
float fdimf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double fdiml(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double fmax(double x, double y) {
	__ensure(isfinite(x) && isfinite(y));
	return x < y ? y : x;
}
float fmaxf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double fmaxl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

double fmin(double x, double y) {
	__ensure(isfinite(x) && isfinite(y));
	return x < y ? x : y;
}
float fminf(float x, float y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}
long double fminl(long double x, long double y) {
	__ensure(!"Not implemented");
	__builtin_unreachable();
}

//gnu extension

void sincos(double x, double *sx, double *cx) {
	mlibc::infoLogger() << "mlibc: sincos() is not precise" << frg::endlog;
	float sxf;
	float cxf;
	sincosf(x, &sxf, &cxf);
	*sx = sxf;
	*cx = cxf;
}

void sincosf(float x, float *sx, float *cx) {
	// This is a lazy implementation.
	__ensure(sx);
	__ensure(cx);
	*sx = sinf(x);
	*cx = cosf(x);
}
void sincosl(long double, long double *, long double *) {
	__ensure(!"sincosl() not implemented");
	__builtin_unreachable();
}

double exp10(double) {
	__ensure(!"exp10() not implemented");
	__builtin_unreachable();
}
float exp10f(float) {
	__ensure(!"exp10f() not implemented");
	__builtin_unreachable();
}
long double exp10l(long double) {
	__ensure(!"exp10l() not implemented");
	__builtin_unreachable();
}

double pow10(double) {
	__ensure(!"pow10() not implemented");
	__builtin_unreachable();
}
float pow10f(float) {
	__ensure(!"pow10f() not implemented");
	__builtin_unreachable();
}
long double pow10l(long double) {
	__ensure(!"pow10l() not implemented");
	__builtin_unreachable();
}