/* * Copyright (c) 2023-2024 Ian Marco Moffett and the Osmora Team. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Hyra nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #define ALLOC_MAPPING() dynalloc(sizeof(struct vm_mapping)) static size_t vm_hash_vaddr(vaddr_t va) { va = (va ^ (va >> 30)) * (size_t)0xBF58476D1CE4E5B9; va = (va ^ (va >> 27)) * (size_t)0x94D049BB133111EB; va = va ^ (va >> 31); return va; } /* * Destroy a map queue. */ void vm_free_mapq(vm_mapq_t *mapq) { struct vm_mapping *map; size_t map_pages, granule; granule = vm_get_page_size(); TAILQ_FOREACH(map, mapq, link) { map_pages = (map->range.end - map->range.start) / granule; vm_free_pageframe(map->range.start, map_pages); } dynfree(map); } /* * Remove a mapping from a mapspace. * * @ms: Mapspace. * @mapping: Mapping to remove. */ void vm_mapspace_remove(struct vm_mapspace *ms, struct vm_mapping *mapping) { size_t vhash; vm_mapq_t *mapq; if (ms == NULL) return; vhash = vm_hash_vaddr(mapping->range.start); mapq = &ms->mtab[vhash % MTAB_ENTRIES]; TAILQ_REMOVE(mapq, mapping, link); --ms->map_count; } /* * Fetch a mapping from a mapspace. * * @ms: Mapspace. * @va: Virtual address. */ struct vm_mapping * vm_mapping_fetch(struct vm_mapspace *ms, vaddr_t va) { size_t vhash; const vm_mapq_t *mapq; struct vm_mapping *map; if (ms == NULL) return NULL; vhash = vm_hash_vaddr(va); mapq = &ms->mtab[vhash % MTAB_ENTRIES]; TAILQ_FOREACH(map, mapq, link) { if (map->vhash == vhash) { return map; } } return NULL; } /* * Insert a mapping into a mapspace. * * @ms: Target mapspace. * @mapping: Mapping to insert. */ void vm_mapspace_insert(struct vm_mapspace *ms, struct vm_mapping *mapping) { size_t vhash; vm_mapq_t *q; if (mapping == NULL || ms == NULL) return; vhash = vm_hash_vaddr(mapping->range.start); mapping->vhash = vhash; q = &ms->mtab[vhash % MTAB_ENTRIES]; TAILQ_INSERT_HEAD(q, mapping, link); ++ms->map_count; } /* * Create a mapping (internal helper) * * @addr: Address to map. * @physmem: Physical address, set to 0 to alloc one here * @prot: Protection flags. * * Returns zero on failure. */ static paddr_t vm_map(void *addr, paddr_t physmem, vm_prot_t prot, size_t len) { struct proc *td = this_td(); const size_t GRANULE = vm_get_page_size(); int status; /* Allocate the physical memory if needed */ if (physmem == 0) physmem = vm_alloc_pageframe(len / GRANULE); if (physmem == 0) return 0; /* * XXX: There is no need to worry about alignment yet * as vm_map_create() handles that internally. */ prot |= PROT_USER; status = vm_map_create(td->addrsp, (vaddr_t)addr, physmem, prot, len); if (status != 0) { vm_free_pageframe(physmem, len / GRANULE); return 0; } return physmem; } /* * Create a mapping backed by a file. * * @addr: Address to map. * @prot: Protection flags. * @len: Length of mapping. * @off: Offset. * @fd: File descriptor. */ static paddr_t vm_fd_map(void *addr, vm_prot_t prot, size_t len, off_t off, int fd, struct vm_mapping *mapping) { paddr_t physmem = 0; int oflag; struct filedesc *filedes; struct vnode *vp; struct proc *td = this_td(); struct vm_page pg = {0}; /* Attempt to get the vnode */ filedes = fd_from_fdnum(td, fd); if (filedes == NULL) return 0; if ((vp = filedes->vnode) == NULL) return 0; /* Check the perms of the filedes */ oflag = filedes->oflag; if (__TEST(prot, PROT_WRITE) && oflag == O_RDONLY) return 0; if (!__TEST(prot, PROT_WRITE) && oflag == O_WRONLY) return 0; /* Try to create the virtual memory object */ if (vm_obj_init(&vp->vmobj, vp) != 0) return 0; mapping->vmobj = vp->vmobj; vm_object_ref(vp->vmobj); /* Try to fetch a physical address */ if (vm_pager_paddr(vp->vmobj, &physmem, prot) != 0) { vm_obj_destroy(vp->vmobj); return 0; } /* * If the pager found a physical address for the object to * be mapped to, then we start off with an anonymous mapping * then connect it to the physical address (creates a shared mapping) */ if (physmem != 0) { vm_map(addr, physmem, prot, len); return physmem; } /* * If the pager could not find a physical address for * the object to be mapped to, start of with just a plain * anonymous mapping then page-in from whatever filesystem * (creates a shared mapping) */ physmem = vm_map(addr, 0, prot, len); pg.physaddr = physmem; if (vm_pager_get(vp->vmobj, off, len, &pg) != 0) { vm_obj_destroy(vp->vmobj); return 0; } return physmem; } static int munmap(void *addr, size_t len) { struct proc *td = this_td(); struct vm_mapping *mapping; struct vm_object *obj; struct vnode *vp; struct vm_mapspace *ms; size_t map_len, granule; vaddr_t map_start, map_end; spinlock_acquire(&td->mapspace_lock); ms = &td->mapspace; granule = vm_get_page_size(); mapping = vm_mapping_fetch(ms, (vaddr_t)addr); if (mapping == NULL) { return -1; } map_start = mapping->range.start; map_end = mapping->range.end; map_len = map_end - map_start; /* Try to release any virtual memory objects */ if ((obj = mapping->vmobj) != NULL) { spinlock_acquire(&obj->lock); /* * Drop our ref and try to cleanup. If the refcount * is > 1, something is still holding it and we can't * do much. */ vm_object_unref(obj); vp = obj->vnode; if (vp != NULL && obj->ref == 1) { vp->vmobj = NULL; vm_obj_destroy(obj); } spinlock_release(&obj->lock); } /* Release the mapping */ vm_map_destroy(td->addrsp, map_start, map_len); vm_free_pageframe(mapping->range.start, map_len / granule); /* Destroy the mapping descriptor */ vm_mapspace_remove(ms, mapping); dynfree(mapping); spinlock_release(&td->mapspace_lock); return 0; } static void * mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off) { const int PROT_MASK = PROT_WRITE | PROT_EXEC; const size_t GRANULE = vm_get_page_size(); uintptr_t map_end, map_start; struct proc *td = this_td(); struct vm_mapping *mapping = ALLOC_MAPPING(); struct vm_object *vmobj; size_t misalign = ((vaddr_t)addr) & (GRANULE - 1); paddr_t physmem = 0; mapping->prot = prot | PROT_USER; /* Ensure of valid prot flags */ if ((prot & ~PROT_MASK) != 0) return MAP_FAILED; /* * Now we check what type of map request * this is. */ if (__TEST(flags, MAP_ANONYMOUS)) { /* Try to create a virtual memory object */ if (vm_obj_init(&vmobj, NULL) != 0) return 0; /* * If 'addr' is NULL, we'll just allocate physical * memory right away. */ if (addr == NULL) physmem = vm_alloc_pageframe(len / GRANULE); /* * Enable demand paging for this object if * `addr` is not NULL. */ if (addr != NULL) { vmobj->is_anon = 1; vmobj->demand = 1; mapping->vmobj = vmobj; mapping->physmem_base = 0; } else if (physmem != 0) { vm_map((void *)physmem, physmem, prot, len); addr = (void *)physmem; vmobj->is_anon = 1; vmobj->demand = 0; mapping->vmobj = vmobj; mapping->physmem_base = physmem; } /* Did this work? */ if (physmem == 0 && addr == NULL) return MAP_FAILED; } else if (__TEST(flags, MAP_SHARED)) { physmem = vm_fd_map(addr, prot, len, off, fildes, mapping); if (physmem == 0) return MAP_FAILED; } map_start = __ALIGN_DOWN((vaddr_t)addr, GRANULE); map_end = map_start + __ALIGN_UP(len + misalign, GRANULE); mapping->range.start = map_start; mapping->range.end = map_end; mapping->physmem_base = physmem; /* Add to mapspace */ spinlock_acquire(&td->mapspace_lock); vm_mapspace_insert(&td->mapspace, mapping); spinlock_release(&td->mapspace_lock); return (void *)addr; } /* * Internal routine for cleaning up. * * @va: VA to start unmapping at. * @bytes_aligned: Amount of bytes to unmap. * * XXX DANGER!!: `bytes_aligned' is expected to be aligned by the * machine's page granule. If this is not so, * undefined behaviour will occur. This will * be enforced via a panic. */ static void vm_map_cleanup(struct vas vas, struct vm_ctx *ctx, vaddr_t va, size_t bytes_aligned, size_t granule) { __assert(bytes_aligned != 0); __assert((bytes_aligned & (granule - 1)) == 0); for (size_t i = 0; i < bytes_aligned; i += 0x1000) { if (pmap_unmap(ctx, vas, va + i) != 0) { /* * XXX: This shouldn't happen... If it somehow does, * then this should be handled. */ panic("Could not cleanup!!!\n"); } } } /* * Create a virtual memory mappings in the current * address space. * * @va: Virtual address. * @pa: Physical address. * @prot: Protection flags. * @bytes: Amount of bytes to be mapped. This is aligned by the * machine's page granule, typically a 4k boundary. */ int vm_map_create(struct vas vas, vaddr_t va, paddr_t pa, vm_prot_t prot, size_t bytes) { size_t granule = vm_get_page_size(); size_t misalign = va & (granule - 1); int s; struct vm_ctx *ctx = vm_get_ctx(); /* * The amount of bytes to be mapped should fully span pages, * so we ensure it is aligned by the page granularity. */ bytes = __ALIGN_UP(bytes + misalign, granule); /* Align VA/PA by granule */ va = __ALIGN_DOWN(va, granule); pa = __ALIGN_DOWN(pa, granule); if (bytes == 0) { /* You can't map 0 pages, silly! */ return -1; } for (uintptr_t i = 0; i < bytes; i += granule) { s = pmap_map(ctx, vas, va + i, pa + i, prot); if (s != 0) { /* Something went a bit wrong here, cleanup */ vm_map_cleanup(vas, ctx, va, i, bytes); return -1; } } return 0; } /* * Destroy a virtual memory mapping in the current * address space. */ int vm_map_destroy(struct vas vas, vaddr_t va, size_t bytes) { struct vm_ctx *ctx = vm_get_ctx(); size_t granule = vm_get_page_size(); size_t misalign = va & (granule - 1); int s; /* We want bytes to be aligned by the granule */ bytes = __ALIGN_UP(bytes + misalign, granule); /* Align VA by granule */ va = __ALIGN_DOWN(va, granule); if (bytes == 0) { return -1; } for (uintptr_t i = 0; i < bytes; i += granule) { s = pmap_unmap(ctx, vas, va + i); if (s != 0) { return -1; } } return 0; } uint64_t sys_mmap(struct syscall_args *args) { return (uintptr_t)mmap((void *)args->arg0, args->arg1, args->arg2, args->arg3, args->arg4, args->arg5); } uint64_t sys_munmap(struct syscall_args *args) { return munmap((void *)args->arg0, args->arg1); }