#include #include #include #include #include #include #define printf kprintf #if defined(__cplusplus) #define tlsf_decl inline #else #define tlsf_decl static #endif /* ** Architecture-specific bit manipulation routines. ** ** TLSF achieves O(1) cost for malloc and free operations by limiting ** the search for a free block to a free list of guaranteed size ** adequate to fulfill the request, combined with efficient free list ** queries using bitmasks and architecture-specific bit-manipulation ** routines. ** ** Most modern processors provide instructions to count leading zeroes ** in a word, find the lowest and highest set bit, etc. These ** specific implementations will be used when available, falling back ** to a reasonably efficient generic implementation. ** ** NOTE: TLSF spec relies on ffs/fls returning value 0..31. ** ffs/fls return 1-32 by default, returning 0 for error. */ /* ** Detect whether or not we are building for a 32- or 64-bit (LP/LLP) ** architecture. There is no reliable portable method at compile-time. */ #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \ || defined (_WIN64) || defined (__LP64__) || defined (__LLP64__) #define TLSF_64BIT #endif /* ** gcc 3.4 and above have builtin support, specialized for architecture. ** Some compilers masquerade as gcc; patchlevel test filters them out. */ #if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \ && defined (__GNUC_PATCHLEVEL__) #if defined (__SNC__) /* SNC for Playstation 3. */ tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __builtin_clz(reverse); return bit - 1; } #else tlsf_decl int tlsf_ffs(unsigned int word) { return __builtin_ffs(word) - 1; } #endif tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __builtin_clz(word) : 0; return bit - 1; } #elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64)) /* Microsoft Visual C++ support on x86/X64 architectures. */ #include #pragma intrinsic(_BitScanReverse) #pragma intrinsic(_BitScanForward) tlsf_decl int tlsf_fls(unsigned int word) { unsigned long index; return _BitScanReverse(&index, word) ? index : -1; } tlsf_decl int tlsf_ffs(unsigned int word) { unsigned long index; return _BitScanForward(&index, word) ? index : -1; } #elif defined (_MSC_VER) && defined (_M_PPC) /* Microsoft Visual C++ support on PowerPC architectures. */ #include tlsf_decl int tlsf_fls(unsigned int word) { const int bit = 32 - _CountLeadingZeros(word); return bit - 1; } tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - _CountLeadingZeros(reverse); return bit - 1; } #elif defined (__ARMCC_VERSION) /* RealView Compilation Tools for ARM */ tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __clz(reverse); return bit - 1; } tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __clz(word) : 0; return bit - 1; } #elif defined (__ghs__) /* Green Hills support for PowerPC */ #include tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __CLZ32(reverse); return bit - 1; } tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __CLZ32(word) : 0; return bit - 1; } #else /* Fall back to generic implementation. */ tlsf_decl int tlsf_fls_generic(unsigned int word) { int bit = 32; if (!word) bit -= 1; if (!(word & 0xffff0000)) { word <<= 16; bit -= 16; } if (!(word & 0xff000000)) { word <<= 8; bit -= 8; } if (!(word & 0xf0000000)) { word <<= 4; bit -= 4; } if (!(word & 0xc0000000)) { word <<= 2; bit -= 2; } if (!(word & 0x80000000)) { word <<= 1; bit -= 1; } return bit; } /* Implement ffs in terms of fls. */ tlsf_decl int tlsf_ffs(unsigned int word) { return tlsf_fls_generic(word & (~word + 1)) - 1; } tlsf_decl int tlsf_fls(unsigned int word) { return tlsf_fls_generic(word) - 1; } #endif /* Possibly 64-bit version of tlsf_fls. */ #if defined (TLSF_64BIT) tlsf_decl int tlsf_fls_sizet(size_t size) { int high = (int)(size >> 32); int bits = 0; if (high) { bits = 32 + tlsf_fls(high); } else { bits = tlsf_fls((int)size & 0xffffffff); } return bits; } #else #define tlsf_fls_sizet tlsf_fls #endif #undef tlsf_decl /* ** Constants. */ /* Public constants: may be modified. */ enum tlsf_public { /* log2 of number of linear subdivisions of block sizes. Larger ** values require more memory in the control structure. Values of ** 4 or 5 are typical. */ SL_INDEX_COUNT_LOG2 = 5, }; /* Private constants: do not modify. */ enum tlsf_private { #if defined (TLSF_64BIT) /* All allocation sizes and addresses are aligned to 8 bytes. */ ALIGN_SIZE_LOG2 = 3, #else /* All allocation sizes and addresses are aligned to 4 bytes. */ ALIGN_SIZE_LOG2 = 2, #endif ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2), /* ** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits. ** However, because we linearly subdivide the second-level lists, and ** our minimum size granularity is 4 bytes, it doesn't make sense to ** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4, ** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be ** trying to split size ranges into more slots than we have available. ** Instead, we calculate the minimum threshold size, and place all ** blocks below that size into the 0th first-level list. */ #if defined (TLSF_64BIT) /* ** TODO: We can increase this to support larger sizes, at the expense ** of more overhead in the TLSF structure. */ FL_INDEX_MAX = 32, #else FL_INDEX_MAX = 30, #endif SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2), FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2), FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1), SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT), }; /* ** Cast and min/max macros. */ #define tlsf_cast(t, exp) ((t) (exp)) #define tlsf_min(a, b) ((a) < (b) ? (a) : (b)) #define tlsf_max(a, b) ((a) > (b) ? (a) : (b)) /* ** Set assert macro, if it has not been provided by the user. */ #if !defined (tlsf_assert) #define tlsf_assert __assert #endif /* ** Static assertion mechanism. */ #define _tlsf_glue2(x, y) x ## y #define _tlsf_glue(x, y) _tlsf_glue2(x, y) #define tlsf_static_assert(exp) \ typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1] /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */ tlsf_static_assert(sizeof(int) * CHAR_BIT == 32); tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32); tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64); /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */ tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT); /* Ensure we've properly tuned our sizes. */ tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT); /* ** Data structures and associated constants. */ /* ** Block header structure. ** ** There are several implementation subtleties involved: ** - The prev_phys_block field is only valid if the previous block is free. ** - The prev_phys_block field is actually stored at the end of the ** previous block. It appears at the beginning of this structure only to ** simplify the implementation. ** - The next_free / prev_free fields are only valid if the block is free. */ typedef struct block_header_t { /* Points to the previous physical block. */ struct block_header_t* prev_phys_block; /* The size of this block, excluding the block header. */ size_t size; /* Next and previous free blocks. */ struct block_header_t* next_free; struct block_header_t* prev_free; } block_header_t; /* ** Since block sizes are always at least a multiple of 4, the two least ** significant bits of the size field are used to store the block status: ** - bit 0: whether block is busy or free ** - bit 1: whether previous block is busy or free */ static const size_t block_header_free_bit = 1 << 0; static const size_t block_header_prev_free_bit = 1 << 1; /* ** The size of the block header exposed to used blocks is the size field. ** The prev_phys_block field is stored *inside* the previous free block. */ static const size_t block_header_overhead = sizeof(size_t); /* User data starts directly after the size field in a used block. */ static const size_t block_start_offset = offsetof(block_header_t, size) + sizeof(size_t); /* ** A free block must be large enough to store its header minus the size of ** the prev_phys_block field, and no larger than the number of addressable ** bits for FL_INDEX. */ static const size_t block_size_min = sizeof(block_header_t) - sizeof(block_header_t*); static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX; /* The TLSF control structure. */ typedef struct control_t { /* Empty lists point at this block to indicate they are free. */ block_header_t block_null; /* Bitmaps for free lists. */ unsigned int fl_bitmap; unsigned int sl_bitmap[FL_INDEX_COUNT]; /* Head of free lists. */ block_header_t* blocks[FL_INDEX_COUNT][SL_INDEX_COUNT]; } control_t; /* A type used for casting when doing pointer arithmetic. */ typedef ptrdiff_t tlsfptr_t; /* ** block_header_t member functions. */ static size_t block_size(const block_header_t* block) { return block->size & ~(block_header_free_bit | block_header_prev_free_bit); } static void block_set_size(block_header_t* block, size_t size) { const size_t oldsize = block->size; block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit)); } static int block_is_last(const block_header_t* block) { return block_size(block) == 0; } static int block_is_free(const block_header_t* block) { return tlsf_cast(int, block->size & block_header_free_bit); } static void block_set_free(block_header_t* block) { block->size |= block_header_free_bit; } static void block_set_used(block_header_t* block) { block->size &= ~block_header_free_bit; } static int block_is_prev_free(const block_header_t* block) { return tlsf_cast(int, block->size & block_header_prev_free_bit); } static void block_set_prev_free(block_header_t* block) { block->size |= block_header_prev_free_bit; } static void block_set_prev_used(block_header_t* block) { block->size &= ~block_header_prev_free_bit; } static block_header_t* block_from_ptr(const void* ptr) { return tlsf_cast(block_header_t*, tlsf_cast(unsigned char*, ptr) - block_start_offset); } static void* block_to_ptr(const block_header_t* block) { return tlsf_cast(void*, tlsf_cast(unsigned char*, block) + block_start_offset); } /* Return location of next block after block of given size. */ static block_header_t* offset_to_block(const void* ptr, size_t size) { return tlsf_cast(block_header_t*, tlsf_cast(tlsfptr_t, ptr) + size); } /* Return location of previous block. */ static block_header_t* block_prev(const block_header_t* block) { tlsf_assert(block_is_prev_free(block) && "previous block must be free"); return block->prev_phys_block; } /* Return location of next existing block. */ static block_header_t* block_next(const block_header_t* block) { block_header_t* next = offset_to_block(block_to_ptr(block), block_size(block) - block_header_overhead); tlsf_assert(!block_is_last(block)); return next; } /* Link a new block with its physical neighbor, return the neighbor. */ static block_header_t* block_link_next(block_header_t* block) { block_header_t* next = block_next(block); next->prev_phys_block = block; return next; } static void block_mark_as_free(block_header_t* block) { /* Link the block to the next block, first. */ block_header_t* next = block_link_next(block); block_set_prev_free(next); block_set_free(block); } static void block_mark_as_used(block_header_t* block) { block_header_t* next = block_next(block); block_set_prev_used(next); block_set_used(block); } static size_t align_up(size_t x, size_t align) { tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return (x + (align - 1)) & ~(align - 1); } static size_t align_down(size_t x, size_t align) { tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return x - (x & (align - 1)); } static void* align_ptr(const void* ptr, size_t align) { const tlsfptr_t aligned = (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1); tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return tlsf_cast(void*, aligned); } /* ** Adjust an allocation size to be aligned to word size, and no smaller ** than internal minimum. */ static size_t adjust_request_size(size_t size, size_t align) { size_t adjust = 0; if (size) { const size_t aligned = align_up(size, align); /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */ if (aligned < block_size_max) { adjust = tlsf_max(aligned, block_size_min); } } return adjust; } /* ** TLSF utility functions. In most cases, these are direct translations of ** the documentation found in the white paper. */ static void mapping_insert(size_t size, int* fli, int* sli) { int fl, sl; if (size < SMALL_BLOCK_SIZE) { /* Store small blocks in first list. */ fl = 0; sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT); } else { fl = tlsf_fls_sizet(size); sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2); fl -= (FL_INDEX_SHIFT - 1); } *fli = fl; *sli = sl; } /* This version rounds up to the next block size (for allocations) */ static void mapping_search(size_t size, int* fli, int* sli) { if (size >= SMALL_BLOCK_SIZE) { const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1; size += round; } mapping_insert(size, fli, sli); } static block_header_t* search_suitable_block(control_t* control, int* fli, int* sli) { int fl = *fli; int sl = *sli; /* ** First, search for a block in the list associated with the given ** fl/sl index. */ unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl); if (!sl_map) { /* No block exists. Search in the next largest first-level list. */ const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1)); if (!fl_map) { /* No free blocks available, memory has been exhausted. */ return 0; } fl = tlsf_ffs(fl_map); *fli = fl; sl_map = control->sl_bitmap[fl]; } tlsf_assert(sl_map && "internal error - second level bitmap is null"); sl = tlsf_ffs(sl_map); *sli = sl; /* Return the first block in the free list. */ return control->blocks[fl][sl]; } /* Remove a free block from the free list.*/ static void remove_free_block(control_t* control, block_header_t* block, int fl, int sl) { block_header_t* prev = block->prev_free; block_header_t* next = block->next_free; tlsf_assert(prev && "prev_free field can not be null"); tlsf_assert(next && "next_free field can not be null"); next->prev_free = prev; prev->next_free = next; /* If this block is the head of the free list, set new head. */ if (control->blocks[fl][sl] == block) { control->blocks[fl][sl] = next; /* If the new head is null, clear the bitmap. */ if (next == &control->block_null) { control->sl_bitmap[fl] &= ~(1U << sl); /* If the second bitmap is now empty, clear the fl bitmap. */ if (!control->sl_bitmap[fl]) { control->fl_bitmap &= ~(1U << fl); } } } } /* Insert a free block into the free block list. */ static void insert_free_block(control_t* control, block_header_t* block, int fl, int sl) { block_header_t* current = control->blocks[fl][sl]; tlsf_assert(current && "free list cannot have a null entry"); tlsf_assert(block && "cannot insert a null entry into the free list"); block->next_free = current; block->prev_free = &control->block_null; current->prev_free = block; tlsf_assert((uintptr_t)block_to_ptr(block) == (uintptr_t)align_ptr(block_to_ptr(block), ALIGN_SIZE) && "block not aligned properly"); /* ** Insert the new block at the head of the list, and mark the first- ** and second-level bitmaps appropriately. */ control->blocks[fl][sl] = block; control->fl_bitmap |= (1U << fl); control->sl_bitmap[fl] |= (1U << sl); } /* Remove a given block from the free list. */ static void block_remove(control_t* control, block_header_t* block) { int fl, sl; mapping_insert(block_size(block), &fl, &sl); remove_free_block(control, block, fl, sl); } /* Insert a given block into the free list. */ static void block_insert(control_t* control, block_header_t* block) { int fl, sl; mapping_insert(block_size(block), &fl, &sl); insert_free_block(control, block, fl, sl); } static int block_can_split(block_header_t* block, size_t size) { return block_size(block) >= sizeof(block_header_t) + size; } /* Split a block into two, the second of which is free. */ static block_header_t* block_split(block_header_t* block, size_t size) { /* Calculate the amount of space left in the remaining block. */ block_header_t* remaining = offset_to_block(block_to_ptr(block), size - block_header_overhead); const size_t remain_size = block_size(block) - (size + block_header_overhead); tlsf_assert((uintptr_t)block_to_ptr(remaining) == (uintptr_t)align_ptr(block_to_ptr(remaining), ALIGN_SIZE) && "remaining block not aligned properly"); tlsf_assert(block_size(block) == remain_size + size + block_header_overhead); block_set_size(remaining, remain_size); tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size"); block_set_size(block, size); block_mark_as_free(remaining); return remaining; } /* Absorb a free block's storage into an adjacent previous free block. */ static block_header_t* block_absorb(block_header_t* prev, block_header_t* block) { tlsf_assert(!block_is_last(prev) && "previous block can't be last"); /* Note: Leaves flags untouched. */ prev->size += block_size(block) + block_header_overhead; block_link_next(prev); return prev; } /* Merge a just-freed block with an adjacent previous free block. */ static block_header_t* block_merge_prev(control_t* control, block_header_t* block) { if (block_is_prev_free(block)) { block_header_t* prev = block_prev(block); tlsf_assert(prev && "prev physical block can't be null"); tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such"); block_remove(control, prev); block = block_absorb(prev, block); } return block; } /* Merge a just-freed block with an adjacent free block. */ static block_header_t* block_merge_next(control_t* control, block_header_t* block) { block_header_t* next = block_next(block); tlsf_assert(next && "next physical block can't be null"); if (block_is_free(next)) { tlsf_assert(!block_is_last(block) && "previous block can't be last"); block_remove(control, next); block = block_absorb(block, next); } return block; } /* Trim any trailing block space off the end of a block, return to pool. */ static void block_trim_free(control_t* control, block_header_t* block, size_t size) { tlsf_assert(block_is_free(block) && "block must be free"); if (block_can_split(block, size)) { block_header_t* remaining_block = block_split(block, size); block_link_next(block); block_set_prev_free(remaining_block); block_insert(control, remaining_block); } } /* Trim any trailing block space off the end of a used block, return to pool. */ static void block_trim_used(control_t* control, block_header_t* block, size_t size) { tlsf_assert(!block_is_free(block) && "block must be used"); if (block_can_split(block, size)) { /* If the next block is free, we must coalesce. */ block_header_t* remaining_block = block_split(block, size); block_set_prev_used(remaining_block); remaining_block = block_merge_next(control, remaining_block); block_insert(control, remaining_block); } } static block_header_t* block_trim_free_leading(control_t* control, block_header_t* block, size_t size) { block_header_t* remaining_block = block; if (block_can_split(block, size)) { /* We want the 2nd block. */ remaining_block = block_split(block, size - block_header_overhead); block_set_prev_free(remaining_block); block_link_next(block); block_insert(control, block); } return remaining_block; } static block_header_t* block_locate_free(control_t* control, size_t size) { int fl = 0, sl = 0; block_header_t* block = 0; if (size) { mapping_search(size, &fl, &sl); /* ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up ** with indices that are off the end of the block array. ** So, we protect against that here, since this is the only callsite of mapping_search. ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range. */ if (fl < FL_INDEX_COUNT) { block = search_suitable_block(control, &fl, &sl); } } if (block) { tlsf_assert(block_size(block) >= size); remove_free_block(control, block, fl, sl); } return block; } static void* block_prepare_used(control_t* control, block_header_t* block, size_t size) { void* p = 0; if (block) { tlsf_assert(size && "size must be non-zero"); block_trim_free(control, block, size); block_mark_as_used(block); p = block_to_ptr(block); } return p; } /* Clear structure and point all empty lists at the null block. */ static void control_construct(control_t* control) { int i, j; control->block_null.next_free = &control->block_null; control->block_null.prev_free = &control->block_null; control->fl_bitmap = 0; for (i = 0; i < FL_INDEX_COUNT; ++i) { control->sl_bitmap[i] = 0; for (j = 0; j < SL_INDEX_COUNT; ++j) { control->blocks[i][j] = &control->block_null; } } } /* ** Debugging utilities. */ typedef struct integrity_t { int prev_status; int status; } integrity_t; #define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } } static void integrity_walker(void* ptr, size_t size, int used, void* user) { block_header_t* block = block_from_ptr(ptr); integrity_t* integ = tlsf_cast(integrity_t*, user); const int this_prev_status = block_is_prev_free(block) ? 1 : 0; const int this_status = block_is_free(block) ? 1 : 0; const size_t this_block_size = block_size(block); int status = 0; (void)used; tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect"); tlsf_insist(size == this_block_size && "block size incorrect"); integ->prev_status = this_status; integ->status += status; } int tlsf_check(tlsf_t tlsf) { int i, j; control_t* control = tlsf_cast(control_t*, tlsf); int status = 0; /* Check that the free lists and bitmaps are accurate. */ for (i = 0; i < FL_INDEX_COUNT; ++i) { for (j = 0; j < SL_INDEX_COUNT; ++j) { const int fl_map = control->fl_bitmap & (1U << i); const int sl_list = control->sl_bitmap[i]; const int sl_map = sl_list & (1U << j); const block_header_t* block = control->blocks[i][j]; /* Check that first- and second-level lists agree. */ if (!fl_map) { tlsf_insist(!sl_map && "second-level map must be null"); } if (!sl_map) { tlsf_insist((uint64_t)block == (uint64_t)&control->block_null && "block list must be null"); continue; } /* Check that there is at least one free block. */ tlsf_insist(sl_list && "no free blocks in second-level map"); tlsf_insist((uintptr_t)block != (uintptr_t)&control->block_null && "block should not be null"); while (block != &control->block_null) { int fli, sli; tlsf_insist(block_is_free(block) && "block should be free"); tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced"); tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced"); tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free"); tlsf_insist(block_size(block) >= block_size_min && "block not minimum size"); mapping_insert(block_size(block), &fli, &sli); tlsf_insist(fli == i && sli == j && "block size indexed in wrong list"); block = block->next_free; } } } return status; } #undef tlsf_insist static void default_walker(void* ptr, size_t size, int used, void* user) { (void)user; printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, block_from_ptr(ptr)); } void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user) { tlsf_walker pool_walker = walker ? walker : default_walker; block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); while (block && !block_is_last(block)) { pool_walker( block_to_ptr(block), block_size(block), !block_is_free(block), user); block = block_next(block); } } size_t tlsf_block_size(void* ptr) { size_t size = 0; if (ptr) { const block_header_t* block = block_from_ptr(ptr); size = block_size(block); } return size; } int tlsf_check_pool(pool_t pool) { /* Check that the blocks are physically correct. */ integrity_t integ = { 0, 0 }; tlsf_walk_pool(pool, integrity_walker, &integ); return integ.status; } /* ** Size of the TLSF structures in a given memory block passed to ** tlsf_create, equal to the size of a control_t */ size_t tlsf_size(void) { return sizeof(control_t); } size_t tlsf_align_size(void) { return ALIGN_SIZE; } size_t tlsf_block_size_min(void) { return block_size_min; } size_t tlsf_block_size_max(void) { return block_size_max; } /* ** Overhead of the TLSF structures in a given memory block passed to ** tlsf_add_pool, equal to the overhead of a free block and the ** sentinel block. */ size_t tlsf_pool_overhead(void) { return 2 * block_header_overhead; } size_t tlsf_alloc_overhead(void) { return block_header_overhead; } pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes) { block_header_t* block; block_header_t* next; const size_t pool_overhead = tlsf_pool_overhead(); const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE); if (((ptrdiff_t)mem % ALIGN_SIZE) != 0) { printf("tlsf_add_pool: Memory must be aligned by %u bytes.\n", (unsigned int)ALIGN_SIZE); return 0; } if (pool_bytes < block_size_min || pool_bytes > block_size_max) { #if defined (TLSF_64BIT) printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n", (unsigned int)(pool_overhead + block_size_min), (unsigned int)((pool_overhead + block_size_max) / 256)); #else printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n", (unsigned int)(pool_overhead + block_size_min), (unsigned int)(pool_overhead + block_size_max)); #endif return 0; } /* ** Create the main free block. Offset the start of the block slightly ** so that the prev_phys_block field falls outside of the pool - ** it will never be used. */ block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead); block_set_size(block, pool_bytes); block_set_free(block); block_set_prev_used(block); block_insert(tlsf_cast(control_t*, tlsf), block); /* Split the block to create a zero-size sentinel block. */ next = block_link_next(block); block_set_size(next, 0); block_set_used(next); block_set_prev_free(next); return mem; } void tlsf_remove_pool(tlsf_t tlsf, pool_t pool) { control_t* control = tlsf_cast(control_t*, tlsf); block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); int fl = 0, sl = 0; tlsf_assert(block_is_free(block) && "block should be free"); tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free"); tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero"); mapping_insert(block_size(block), &fl, &sl); remove_free_block(control, block, fl, sl); } /* ** TLSF main interface. */ #if _DEBUG int test_ffs_fls() { /* Verify ffs/fls work properly. */ int rv = 0; rv += (tlsf_ffs(0) == -1) ? 0 : 0x1; rv += (tlsf_fls(0) == -1) ? 0 : 0x2; rv += (tlsf_ffs(1) == 0) ? 0 : 0x4; rv += (tlsf_fls(1) == 0) ? 0 : 0x8; rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10; rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20; rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40; rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80; #if defined (TLSF_64BIT) rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100; rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200; rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400; #endif if (rv) { printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv); } return rv; } #endif tlsf_t tlsf_create(void* mem) { #if _DEBUG if (test_ffs_fls()) { return 0; } #endif if (((tlsfptr_t)mem % ALIGN_SIZE) != 0) { printf("tlsf_create: Memory must be aligned to %u bytes.\n", (unsigned int)ALIGN_SIZE); return 0; } control_construct(tlsf_cast(control_t*, mem)); return tlsf_cast(tlsf_t, mem); } tlsf_t tlsf_create_with_pool(void* mem, size_t bytes) { tlsf_t tlsf = tlsf_create(mem); tlsf_add_pool(tlsf, (char*)mem + tlsf_size(), bytes - tlsf_size()); return tlsf; } void tlsf_destroy(tlsf_t tlsf) { /* Nothing to do. */ (void)tlsf; } pool_t tlsf_get_pool(tlsf_t tlsf) { return tlsf_cast(pool_t, (char*)tlsf + tlsf_size()); } void* tlsf_malloc(tlsf_t tlsf, size_t size) { control_t* control = tlsf_cast(control_t*, tlsf); const size_t adjust = adjust_request_size(size, ALIGN_SIZE); block_header_t* block = block_locate_free(control, adjust); return block_prepare_used(control, block, adjust); } void* tlsf_memalign(tlsf_t tlsf, size_t align, size_t size) { control_t* control = tlsf_cast(control_t*, tlsf); const size_t adjust = adjust_request_size(size, ALIGN_SIZE); /* ** We must allocate an additional minimum block size bytes so that if ** our free block will leave an alignment gap which is smaller, we can ** trim a leading free block and release it back to the pool. We must ** do this because the previous physical block is in use, therefore ** the prev_phys_block field is not valid, and we can't simply adjust ** the size of that block. */ const size_t gap_minimum = sizeof(block_header_t); const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align); /* ** If alignment is less than or equals base alignment, we're done. ** If we requested 0 bytes, return null, as tlsf_malloc(0) does. */ const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust; block_header_t* block = block_locate_free(control, aligned_size); /* This can't be a static assert. */ tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead); if (block) { void* ptr = block_to_ptr(block); void* aligned = align_ptr(ptr, align); size_t gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr)); /* If gap size is too small, offset to next aligned boundary. */ if (gap && gap < gap_minimum) { const size_t gap_remain = gap_minimum - gap; const size_t offset = tlsf_max(gap_remain, align); const void* next_aligned = tlsf_cast(void*, tlsf_cast(tlsfptr_t, aligned) + offset); aligned = align_ptr(next_aligned, align); gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr)); } if (gap) { tlsf_assert(gap >= gap_minimum && "gap size too small"); block = block_trim_free_leading(control, block, gap); } } return block_prepare_used(control, block, adjust); } void tlsf_free(tlsf_t tlsf, void* ptr) { /* Don't attempt to free a NULL pointer. */ if (ptr) { control_t* control = tlsf_cast(control_t*, tlsf); block_header_t* block = block_from_ptr(ptr); tlsf_assert(!block_is_free(block) && "block already marked as free"); block_mark_as_free(block); block = block_merge_prev(control, block); block = block_merge_next(control, block); block_insert(control, block); } } /* ** The TLSF block information provides us with enough information to ** provide a reasonably intelligent implementation of realloc, growing or ** shrinking the currently allocated block as required. ** ** This routine handles the somewhat esoteric edge cases of realloc: ** - a non-zero size with a null pointer will behave like malloc ** - a zero size with a non-null pointer will behave like free ** - a request that cannot be satisfied will leave the original buffer ** untouched ** - an extended buffer size will leave the newly-allocated area with ** contents undefined */ void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size) { control_t* control = tlsf_cast(control_t*, tlsf); void* p = 0; /* Zero-size requests are treated as free. */ if (ptr && size == 0) { tlsf_free(tlsf, ptr); } /* Requests with NULL pointers are treated as malloc. */ else if (!ptr) { p = tlsf_malloc(tlsf, size); } else { block_header_t* block = block_from_ptr(ptr); block_header_t* next = block_next(block); const size_t cursize = block_size(block); const size_t combined = cursize + block_size(next) + block_header_overhead; const size_t adjust = adjust_request_size(size, ALIGN_SIZE); tlsf_assert(!block_is_free(block) && "block already marked as free"); /* ** If the next block is used, or when combined with the current ** block, does not offer enough space, we must reallocate and copy. */ if (adjust > cursize && (!block_is_free(next) || adjust > combined)) { p = tlsf_malloc(tlsf, size); if (p) { const size_t minsize = tlsf_min(cursize, size); memcpy(p, ptr, minsize); tlsf_free(tlsf, ptr); } } else { /* Do we need to expand to the next block? */ if (adjust > cursize) { block_merge_next(control, block); block_mark_as_used(block); } /* Trim the resulting block and return the original pointer. */ block_trim_used(control, block, adjust); p = ptr; } } return p; }