#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cxx-syscall.hpp" #define STUB_ONLY { __ensure(!"STUB_ONLY function was called"); __builtin_unreachable(); } #define UNUSED(x) (void)(x); #ifndef MLIBC_BUILDING_RTDL extern "C" long __do_syscall_ret(unsigned long ret) { if(ret > -4096UL) { errno = -ret; return -1; } return ret; } #endif namespace mlibc { void sys_libc_log(const char *message) { size_t n = 0; while(message[n]) n++; do_syscall(SYS_write, 2, message, n); char lf = '\n'; do_syscall(SYS_write, 2, &lf, 1); } void sys_libc_panic() { __builtin_trap(); } #if defined(__i386__) struct user_desc { unsigned int entry_number; unsigned long base_addr; unsigned int limit; unsigned int seg_32bit: 1; unsigned int contents: 2; unsigned int read_exec_only: 1; unsigned int limit_in_pages: 1; unsigned int seg_not_present: 1; unsigned int useable: 1; }; #endif int sys_tcb_set(void *pointer) { #if defined(__x86_64__) auto ret = do_syscall(SYS_arch_prctl, 0x1002 /* ARCH_SET_FS */, pointer); if(int e = sc_error(ret); e) return e; #elif defined(__i386__) struct user_desc desc = { .entry_number = static_cast(-1), .base_addr = uintptr_t(pointer), .limit = 0xfffff, .seg_32bit = 1, .contents = 0, .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 1, }; auto ret = do_syscall(SYS_set_thread_area, &desc); __ensure(!sc_error(ret)); asm volatile ("movw %w0, %%gs" : : "q"(desc.entry_number * 8 + 3) :); #elif defined(__riscv) uintptr_t thread_data = reinterpret_cast(pointer) + sizeof(Tcb); asm volatile ("mv tp, %0" :: "r"(thread_data)); #elif defined (__aarch64__) uintptr_t thread_data = reinterpret_cast(pointer) + sizeof(Tcb) - 0x10; asm volatile ("msr tpidr_el0, %0" :: "r"(thread_data)); #else #error "Missing architecture specific code." #endif return 0; } int sys_anon_allocate(size_t size, void **pointer) { return sys_vm_map(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0, pointer); } int sys_anon_free(void *pointer, size_t size) { return sys_vm_unmap(pointer, size); } int sys_fadvise(int fd, off_t offset, off_t length, int advice) { auto ret = do_syscall(SYS_fadvise64, fd, offset, length, advice); if(int e = sc_error(ret); e) return e; return 0; } int sys_open(const char *path, int flags, mode_t mode, int *fd) { auto ret = do_cp_syscall(SYS_openat, AT_FDCWD, path, flags, mode); if(int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_openat(int dirfd, const char *path, int flags, mode_t mode, int *fd) { auto ret = do_syscall(SYS_openat, dirfd, path, flags, mode); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_close(int fd) { auto ret = do_cp_syscall(SYS_close, fd); if(int e = sc_error(ret); e) return e; return 0; } int sys_dup2(int fd, int flags, int newfd) { auto ret = do_cp_syscall(SYS_dup3, fd, newfd, flags); if(int e = sc_error(ret); e) return e; return 0; } int sys_read(int fd, void *buffer, size_t size, ssize_t *bytes_read) { auto ret = do_cp_syscall(SYS_read, fd, buffer, size); if(int e = sc_error(ret); e) return e; *bytes_read = sc_int_result(ret); return 0; } int sys_readv(int fd, const struct iovec *iovs, int iovc, ssize_t *bytes_read) { auto ret = do_cp_syscall(SYS_readv, fd, iovs, iovc); if(int e = sc_error(ret); e) return e; *bytes_read = sc_int_result(ret); return 0; } int sys_write(int fd, const void *buffer, size_t size, ssize_t *bytes_written) { auto ret = do_cp_syscall(SYS_write, fd, buffer, size); if(int e = sc_error(ret); e) return e; if(bytes_written) *bytes_written = sc_int_result(ret); return 0; } int sys_seek(int fd, off_t offset, int whence, off_t *new_offset) { auto ret = do_syscall(SYS_lseek, fd, offset, whence); if(int e = sc_error(ret); e) return e; *new_offset = sc_int_result(ret); return 0; } int sys_chmod(const char *pathname, mode_t mode) { auto ret = do_cp_syscall(SYS_fchmodat, AT_FDCWD, pathname, mode); if(int e = sc_error(ret); e) return e; return 0; } int sys_fchmod(int fd, mode_t mode) { auto ret = do_cp_syscall(SYS_fchmod, fd, mode); if(int e = sc_error(ret); e) return e; return 0; } int sys_fchmodat(int fd, const char *pathname, mode_t mode, int flags) { auto ret = do_cp_syscall(SYS_fchmodat, fd, pathname, mode, flags); if(int e = sc_error(ret); e) return e; return 0; } int sys_fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group, int flags) { auto ret = do_cp_syscall(SYS_fchownat, dirfd, pathname, owner, group, flags); if(int e = sc_error(ret); e) return e; return 0; } int sys_utimensat(int dirfd, const char *pathname, const struct timespec times[2], int flags) { auto ret = do_cp_syscall(SYS_utimensat, dirfd, pathname, times, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_vm_map(void *hint, size_t size, int prot, int flags, int fd, off_t offset, void **window) { if(offset % 4096) return EINVAL; if(size >= PTRDIFF_MAX) return ENOMEM; #if defined(SYS_mmap2) auto ret = do_syscall(SYS_mmap2, hint, size, prot, flags, fd, offset/4096); #else auto ret = do_syscall(SYS_mmap, hint, size, prot, flags, fd, offset); #endif // TODO: musl fixes up EPERM errors from the kernel. if(int e = sc_error(ret); e) return e; *window = sc_ptr_result(ret); return 0; } int sys_vm_unmap(void *pointer, size_t size) { auto ret = do_syscall(SYS_munmap, pointer, size); if(int e = sc_error(ret); e) return e; return 0; } // All remaining functions are disabled in ldso. #ifndef MLIBC_BUILDING_RTDL int sys_clock_get(int clock, time_t *secs, long *nanos) { struct timespec tp = {}; auto ret = do_syscall(SYS_clock_gettime, clock, &tp); if (int e = sc_error(ret); e) return e; *secs = tp.tv_sec; *nanos = tp.tv_nsec; return 0; } int sys_clock_getres(int clock, time_t *secs, long *nanos) { struct timespec tp = {}; auto ret = do_syscall(SYS_clock_getres, clock, &tp); if (int e = sc_error(ret); e) return e; *secs = tp.tv_sec; *nanos = tp.tv_nsec; return 0; } int sys_stat(fsfd_target fsfdt, int fd, const char *path, int flags, struct stat *statbuf) { if (fsfdt == fsfd_target::path) fd = AT_FDCWD; else if (fsfdt == fsfd_target::fd) flags |= AT_EMPTY_PATH; else __ensure(fsfdt == fsfd_target::fd_path); #if defined(SYS_newfstatat) auto ret = do_cp_syscall(SYS_newfstatat, fd, path, statbuf, flags); #else auto ret = do_cp_syscall(SYS_fstatat64, fd, path, statbuf, flags); #endif if (int e = sc_error(ret); e) return e; return 0; } int sys_statfs(const char *path, struct statfs *buf) { auto ret = do_cp_syscall(SYS_statfs, path, buf); if (int e = sc_error(ret); e) return e; return 0; } int sys_fstatfs(int fd, struct statfs *buf) { auto ret = do_cp_syscall(SYS_fstatfs, fd, buf); if (int e = sc_error(ret); e) return e; return 0; } extern "C" void __mlibc_signal_restore(void); extern "C" void __mlibc_signal_restore_rt(void); int sys_sigaction(int signum, const struct sigaction *act, struct sigaction *oldact) { struct ksigaction { void (*handler)(int); unsigned long flags; void (*restorer)(void); sigset_t mask; }; struct ksigaction kernel_act, kernel_oldact; if (act) { kernel_act.handler = act->sa_handler; kernel_act.flags = act->sa_flags | SA_RESTORER; kernel_act.restorer = (act->sa_flags & SA_SIGINFO) ? __mlibc_signal_restore_rt : __mlibc_signal_restore; kernel_act.mask = act->sa_mask; } static_assert(sizeof(sigset_t) == 8); auto ret = do_syscall(SYS_rt_sigaction, signum, act ? &kernel_act : NULL, oldact ? &kernel_oldact : NULL, sizeof(sigset_t)); if (int e = sc_error(ret); e) return e; if (oldact) { oldact->sa_handler = kernel_oldact.handler; oldact->sa_flags = kernel_oldact.flags; oldact->sa_restorer = kernel_oldact.restorer; oldact->sa_mask = kernel_oldact.mask; } return 0; } int sys_socket(int domain, int type, int protocol, int *fd) { auto ret = do_syscall(SYS_socket, domain, type, protocol); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_msg_send(int sockfd, const struct msghdr *msg, int flags, ssize_t *length) { auto ret = do_cp_syscall(SYS_sendmsg, sockfd, msg, flags); if (int e = sc_error(ret); e) return e; *length = sc_int_result(ret); return 0; } ssize_t sys_sendto(int fd, const void *buffer, size_t size, int flags, const struct sockaddr *sock_addr, socklen_t addr_length, ssize_t *length) { auto ret = do_cp_syscall(SYS_sendto, fd, buffer, size, flags, sock_addr, addr_length); if(int e = sc_error(ret); e) { return e; } *length = sc_int_result(ret); return 0; } ssize_t sys_recvfrom(int fd, void *buffer, size_t size, int flags, struct sockaddr *sock_addr, socklen_t *addr_length, ssize_t *length) { auto ret = do_cp_syscall(SYS_recvfrom, fd, buffer, size, flags, sock_addr, addr_length); if(int e = sc_error(ret); e) { return e; } *length = sc_int_result(ret); return 0; } int sys_msg_recv(int sockfd, struct msghdr *msg, int flags, ssize_t *length) { auto ret = do_cp_syscall(SYS_recvmsg, sockfd, msg, flags); if (int e = sc_error(ret); e) return e; *length = sc_int_result(ret); return 0; } int sys_fcntl(int fd, int cmd, va_list args, int *result) { auto arg = va_arg(args, unsigned long); // TODO: the api for linux differs for each command so fcntl()s might fail with -EINVAL // we should implement all the different fcntl()s // TODO(geert): only some fcntl()s can fail with -EINTR, making do_cp_syscall useless // on most fcntls(). Another reason to handle different fcntl()s seperately. auto ret = do_cp_syscall(SYS_fcntl, fd, cmd, arg); if (int e = sc_error(ret); e) return e; *result = sc_int_result(ret); return 0; } int sys_getcwd(char *buf, size_t size) { auto ret = do_syscall(SYS_getcwd, buf, size); if (int e = sc_error(ret); e) { return e; } return 0; } int sys_unlinkat(int dfd, const char *path, int flags) { auto ret = do_syscall(SYS_unlinkat, dfd, path, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_sleep(time_t *secs, long *nanos) { struct timespec req = { .tv_sec = *secs, .tv_nsec = *nanos }; struct timespec rem = {}; auto ret = do_cp_syscall(SYS_nanosleep, &req, &rem); if (int e = sc_error(ret); e) return e; *secs = rem.tv_sec; *nanos = rem.tv_nsec; return 0; } int sys_isatty(int fd) { unsigned short winsizeHack[4]; auto ret = do_syscall(SYS_ioctl, fd, 0x5413 /* TIOCGWINSZ */, &winsizeHack); if (int e = sc_error(ret); e) return e; auto res = sc_int_result(ret); if(!res) return 0; return 1; } #if __MLIBC_POSIX_OPTION #include #include #include #include #include #include #include #include #include #include #include #include #include int sys_ioctl(int fd, unsigned long request, void *arg, int *result) { auto ret = do_syscall(SYS_ioctl, fd, request, arg); if (int e = sc_error(ret); e) return e; if (result) *result = sc_int_result(ret); return 0; } int sys_connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen) { auto ret = do_cp_syscall(SYS_connect, sockfd, addr, addrlen); if (int e = sc_error(ret); e) return e; return 0; } int sys_pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, const sigset_t *sigmask, int *num_events) { // The Linux kernel really wants 7 arguments, even tho this is not supported // To fix that issue, they use a struct as the last argument. // See the man page of pselect and the glibc source code struct { sigset_t ss; size_t ss_len; } data; data.ss = (uintptr_t)sigmask; data.ss_len = NSIG / 8; auto ret = do_cp_syscall(SYS_pselect6, nfds, readfds, writefds, exceptfds, timeout, &data); if (int e = sc_error(ret); e) return e; *num_events = sc_int_result(ret); return 0; } int sys_pipe(int *fds, int flags) { if(flags) { auto ret = do_syscall(SYS_pipe2, fds, flags); if (int e = sc_error(ret); e) return e; return 0; } else { auto ret = do_syscall(SYS_pipe2, fds, 0); if (int e = sc_error(ret); e) return e; return 0; } } int sys_fork(pid_t *child) { auto ret = do_syscall(SYS_clone, SIGCHLD, 0); if (int e = sc_error(ret); e) return e; *child = sc_int_result(ret); return 0; } int sys_waitpid(pid_t pid, int *status, int flags, struct rusage *ru, pid_t *ret_pid) { auto ret = do_syscall(SYS_wait4, pid, status, flags, ru); if (int e = sc_error(ret); e) return e; *ret_pid = sc_int_result(ret); return 0; } int sys_execve(const char *path, char *const argv[], char *const envp[]) { auto ret = do_syscall(SYS_execve, path, argv, envp); if (int e = sc_error(ret); e) return e; return 0; } int sys_sigprocmask(int how, const sigset_t *set, sigset_t *old) { auto ret = do_syscall(SYS_rt_sigprocmask, how, set, old, NSIG / 8); if (int e = sc_error(ret); e) return e; return 0; } int sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) { auto ret = do_syscall(SYS_setresuid, ruid, euid, suid); if (int e = sc_error(ret); e) return e; return 0; } int sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) { auto ret = do_syscall(SYS_setresgid, rgid, egid, sgid); if (int e = sc_error(ret); e) return e; return 0; } int sys_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid) { auto ret = do_syscall(SYS_getresuid, &ruid, &euid, &suid); if (int e = sc_error(ret); e) return e; return 0; } int sys_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid) { auto ret = do_syscall(SYS_getresgid, &rgid, &egid, &sgid); if (int e = sc_error(ret); e) return e; return 0; } int sys_setreuid(uid_t ruid, uid_t euid) { auto ret = do_syscall(SYS_setreuid, ruid, euid); if (int e = sc_error(ret); e) return e; return 0; } int sys_setregid(gid_t rgid, gid_t egid) { auto ret = do_syscall(SYS_setregid, rgid, egid); if (int e = sc_error(ret); e) return e; return 0; } int sys_sysinfo(struct sysinfo *info) { auto ret = do_syscall(SYS_sysinfo, info); if (int e = sc_error(ret); e) return e; return 0; } void sys_yield() { do_syscall(SYS_sched_yield); } int sys_clone(void *tcb, pid_t *pid_out, void *stack) { unsigned long flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM | CLONE_SETTLS | CLONE_PARENT_SETTID; #if defined(__riscv) // TP should point to the address immediately after the TCB. // TODO: We should change the sysdep so that we don't need to do this. auto tls = reinterpret_cast(tcb) + sizeof(Tcb); tcb = reinterpret_cast(tls); #elif defined(__aarch64__) // TP should point to the address 16 bytes before the end of the TCB. // TODO: We should change the sysdep so that we don't need to do this. auto tp = reinterpret_cast(tcb) + sizeof(Tcb) - 0x10; tcb = reinterpret_cast(tp); #elif defined(__i386__) /* get the entry number, as we don't request a new one here */ uint32_t gs; asm volatile("movw %%gs, %w0" : "=q"(gs)); auto user_desc = reinterpret_cast(getAllocator().allocate(sizeof(struct user_desc))); user_desc->entry_number = (gs & 0xffff) >> 3; user_desc->base_addr = uintptr_t(tcb); user_desc->limit = 0xfffff; user_desc->seg_32bit = 1; user_desc->contents = 0; user_desc->read_exec_only = 0; user_desc->limit_in_pages = 1; user_desc->seg_not_present = 0; user_desc->useable = 1; tcb = reinterpret_cast(user_desc); #endif auto ret = __mlibc_spawn_thread(flags, stack, pid_out, NULL, tcb); if (ret < 0) return ret; return 0; } extern "C" const char __mlibc_syscall_begin[1]; extern "C" const char __mlibc_syscall_end[1]; #if defined(__riscv) // Disable UBSan here to work around qemu-user misaligning ucontext_t. // https://github.com/qemu/qemu/blob/2bf40d0841b942e7ba12953d515e62a436f0af84/linux-user/riscv/signal.c#L68-L69 [[gnu::no_sanitize("undefined")]] #endif int sys_before_cancellable_syscall(ucontext_t *uct) { #if defined(__x86_64__) auto pc = reinterpret_cast(uct->uc_mcontext.gregs[REG_RIP]); #elif defined(__i386__) auto pc = reinterpret_cast(uct->uc_mcontext.gregs[REG_EIP]); #elif defined(__riscv) auto pc = reinterpret_cast(uct->uc_mcontext.gregs[REG_PC]); #elif defined(__aarch64__) auto pc = reinterpret_cast(uct->uc_mcontext.pc); #else #error "Missing architecture specific code." #endif if (pc < __mlibc_syscall_begin || pc > __mlibc_syscall_end) return 0; return 1; } int sys_tgkill(int tgid, int tid, int sig) { auto ret = do_syscall(SYS_tgkill, tgid, tid, sig); if (int e = sc_error(ret); e) return e; return 0; } int sys_tcgetattr(int fd, struct termios *attr) { auto ret = do_syscall(SYS_ioctl, fd, TCGETS, attr); if (int e = sc_error(ret); e) return e; return 0; } int sys_tcsetattr(int fd, int optional_action, const struct termios *attr) { int req; switch (optional_action) { case TCSANOW: req = TCSETS; break; case TCSADRAIN: req = TCSETSW; break; case TCSAFLUSH: req = TCSETSF; break; default: return EINVAL; } auto ret = do_syscall(SYS_ioctl, fd, req, attr); if (int e = sc_error(ret); e) return e; return 0; } int sys_tcflush(int fd, int queue) { auto ret = do_syscall(SYS_ioctl, fd, TCFLSH, queue); if (int e = sc_error(ret); e) return e; return 0; } int sys_tcdrain(int fd) { auto ret = do_syscall(SYS_ioctl, fd, TCSBRK, 1); if (int e = sc_error(ret); e) return e; return 0; } int sys_tcflow(int fd, int action) { auto ret = do_syscall(SYS_ioctl, fd, TCXONC, action); if (int e = sc_error(ret); e) return e; return 0; } int sys_access(const char *path, int mode) { auto ret = do_syscall(SYS_faccessat, AT_FDCWD, path, mode, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_faccessat(int dirfd, const char *pathname, int mode, int flags) { auto ret = do_syscall(SYS_faccessat, dirfd, pathname, mode, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_accept(int fd, int *newfd, struct sockaddr *addr_ptr, socklen_t *addr_length, int flags) { auto ret = do_syscall(SYS_accept4, fd, addr_ptr, addr_length, flags); if (int e = sc_error(ret); e) return e; *newfd = sc_int_result(ret); return 0; } int sys_bind(int fd, const struct sockaddr *addr_ptr, socklen_t addr_length) { auto ret = do_syscall(SYS_bind, fd, addr_ptr, addr_length, 0, 0, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_setsockopt(int fd, int layer, int number, const void *buffer, socklen_t size) { auto ret = do_syscall(SYS_setsockopt, fd, layer, number, buffer, size, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_sockname(int fd, struct sockaddr *addr_ptr, socklen_t max_addr_length, socklen_t *actual_length) { auto ret = do_syscall(SYS_getsockname, fd, addr_ptr, &max_addr_length); if (int e = sc_error(ret); e) return e; *actual_length = max_addr_length; return 0; } int sys_peername(int fd, struct sockaddr *addr_ptr, socklen_t max_addr_length, socklen_t *actual_length) { auto ret = do_syscall(SYS_getpeername, fd, addr_ptr, &max_addr_length); if (int e = sc_error(ret); e) return e; *actual_length = max_addr_length; return 0; } int sys_listen(int fd, int backlog) { auto ret = do_syscall(SYS_listen, fd, backlog, 0, 0, 0, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_shutdown(int sockfd, int how) { auto ret = do_syscall(SYS_shutdown, sockfd, how); if (int e = sc_error(ret); e) { return e; } return 0; } int sys_getpriority(int which, id_t who, int *value) { auto ret = do_syscall(SYS_getpriority, which, who); if (int e = sc_error(ret); e) { return e; } *value = 20 - sc_int_result(ret); return 0; } int sys_setpriority(int which, id_t who, int prio) { auto ret = do_syscall(SYS_setpriority, which, who, prio); if (int e = sc_error(ret); e) return e; return 0; } int sys_setitimer(int which, const struct itimerval *new_value, struct itimerval *old_value) { auto ret = do_syscall(SYS_setitimer, which, new_value, old_value); if (int e = sc_error(ret); e) return e; return 0; } /* Linux' uapi does some weird union stuff in place of `sigev_tid`, which we conveniently ignore */ struct linux_uapi_sigevent { union sigval sigev_value; int sigev_signo; int sigev_notify; int sigev_tid; }; int sys_timer_create(clockid_t clk, struct sigevent *__restrict evp, timer_t *__restrict res) { struct linux_uapi_sigevent ksev; struct linux_uapi_sigevent *ksevp = 0; int timer_id; switch(evp ? evp->sigev_notify : SIGEV_SIGNAL) { case SIGEV_NONE: case SIGEV_SIGNAL: { if(evp) { ksev.sigev_value = evp->sigev_value; ksev.sigev_signo = evp->sigev_signo; ksev.sigev_notify = evp->sigev_notify; ksev.sigev_tid = 0; ksevp = &ksev; } auto ret = do_syscall(SYS_timer_create, clk, ksevp, &timer_id); if (int e = sc_error(ret); e) { return e; } *res = (void *) (intptr_t) timer_id; break; } case SIGEV_THREAD: __ensure(!"sys_timer_create with evp->sigev_notify == SIGEV_THREAD is unimplemented"); [[fallthrough]]; default: return EINVAL; } return 0; } int sys_timer_settime(timer_t t, int flags, const struct itimerspec *__restrict val, struct itimerspec *__restrict old) { auto ret = do_syscall(SYS_timer_settime, t, flags, val, old); if (int e = sc_error(ret); e) { return e; } return 0; } int sys_timer_delete(timer_t t) { __ensure((intptr_t) t >= 0); auto ret = do_syscall(SYS_timer_delete, t); if (int e = sc_error(ret); e) { return e; } return 0; } int sys_ptrace(long req, pid_t pid, void *addr, void *data, long *out) { auto ret = do_syscall(SYS_ptrace, req, pid, addr, data); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_open_dir(const char *path, int *fd) { return sys_open(path, O_DIRECTORY, 0, fd); } int sys_read_entries(int handle, void *buffer, size_t max_size, size_t *bytes_read) { auto ret = do_syscall(SYS_getdents64, handle, buffer, max_size); if(int e = sc_error(ret); e) return e; *bytes_read = sc_int_result(ret); return 0; } int sys_prctl(int op, va_list ap, int *out) { unsigned long x[4]; for(int i = 0; i < 4; i++) x[i] = va_arg(ap, unsigned long); auto ret = do_syscall(SYS_prctl, op, x[0], x[1], x[2], x[3]); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_uname(struct utsname *buf) { auto ret = do_syscall(SYS_uname, buf); if (int e = sc_error(ret); e) return e; return 0; } int sys_gethostname(char *buf, size_t bufsize) { struct utsname uname_buf; if (auto e = sys_uname(&uname_buf); e) return e; auto node_len = strlen(uname_buf.nodename); if (node_len >= bufsize) return ENAMETOOLONG; memcpy(buf, uname_buf.nodename, node_len); buf[node_len] = '\0'; return 0; } int sys_pread(int fd, void *buf, size_t n, off_t off, ssize_t *bytes_read) { auto ret = do_syscall(SYS_pread64, fd, buf, n, off); if (int e = sc_error(ret); e) return e; *bytes_read = sc_int_result(ret); return 0; } int sys_pwrite(int fd, const void *buf, size_t n, off_t off, ssize_t *bytes_written) { auto ret = do_syscall(SYS_pwrite64, fd, buf, n, off); if (int e = sc_error(ret); e) return e; *bytes_written = sc_int_result(ret); return 0; } int sys_poll(struct pollfd *fds, nfds_t count, int timeout, int *num_events) { struct timespec tm; tm.tv_sec = timeout / 1000; tm.tv_nsec = timeout % 1000 * 1000000; auto ret = do_syscall(SYS_ppoll, fds, count, timeout >= 0 ? &tm : nullptr, 0, NSIG / 8); if (int e = sc_error(ret); e) return e; *num_events = sc_int_result(ret); return 0; } int sys_getrusage(int scope, struct rusage *usage) { auto ret = do_syscall(SYS_getrusage, scope, usage); if (int e = sc_error(ret); e) return e; return 0; } int sys_madvise(void *addr, size_t length, int advice) { auto ret = do_syscall(SYS_madvise, addr, length, advice); if (int e = sc_error(ret); e) return e; return 0; } int sys_msync(void *addr, size_t length, int flags) { auto ret = do_syscall(SYS_msync, addr, length, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_swapon(const char *path, int flags) { auto ret = do_syscall(SYS_swapon, path, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_swapoff(const char *path) { auto ret = do_syscall(SYS_swapoff, path); if (int e = sc_error(ret); e) return e; return 0; } int sys_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask) { auto ret = do_syscall(SYS_sched_getaffinity, pid, cpusetsize, mask); if (int e = sc_error(ret); e) return e; return 0; } int sys_mount(const char *source, const char *target, const char *fstype, unsigned long flags, const void *data) { auto ret = do_syscall(SYS_mount, source, target, fstype, flags, data); if (int e = sc_error(ret); e) return e; return 0; } int sys_umount2(const char *target, int flags) { auto ret = do_syscall(SYS_umount2, target, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_sethostname(const char *buffer, size_t bufsize) { auto ret = do_syscall(SYS_sethostname, buffer, bufsize); if (int e = sc_error(ret); e) return e; return 0; } int sys_epoll_create(int flags, int *fd) { auto ret = do_syscall(SYS_epoll_create1, flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_epoll_ctl(int epfd, int mode, int fd, struct epoll_event *ev) { auto ret = do_syscall(SYS_epoll_ctl, epfd, mode, fd, ev); if (int e = sc_error(ret); e) return e; return 0; } int sys_epoll_pwait(int epfd, struct epoll_event *ev, int n, int timeout, const sigset_t *sigmask, int *raised) { auto ret = do_syscall(SYS_epoll_pwait, epfd, ev, n, timeout, sigmask, NSIG / 8); if (int e = sc_error(ret); e) return e; *raised = sc_int_result(ret); return 0; } int sys_eventfd_create(unsigned int initval, int flags, int *fd) { auto ret = do_syscall(SYS_eventfd2, initval, flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_signalfd_create(const sigset_t *masks, int flags, int *fd) { auto ret = do_syscall(SYS_signalfd4, *fd, masks, sizeof(sigset_t), flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_timerfd_create(int clockid, int flags, int *fd) { auto ret = do_syscall(SYS_timerfd_create, clockid, flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_timerfd_settime(int fd, int flags, const struct itimerspec *value, struct itimerspec *oldvalue) { auto ret = do_syscall(SYS_timerfd_settime, fd, flags, value, oldvalue); if (int e = sc_error(ret); e) return e; return 0; } int sys_inotify_create(int flags, int *fd) { auto ret = do_syscall(SYS_inotify_init1, flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_init_module(void *module, unsigned long length, const char *args) { auto ret = do_syscall(SYS_init_module, module, length, args); if (int e = sc_error(ret); e) return e; return 0; } int sys_delete_module(const char *name, unsigned flags) { auto ret = do_syscall(SYS_delete_module, name, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_klogctl(int type, char *bufp, int len, int *out) { auto ret = do_syscall(SYS_syslog, type, bufp, len); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_getcpu(int *cpu) { auto ret = do_syscall(SYS_getcpu, cpu, NULL, NULL); if (int e = sc_error(ret); e) return e; return 0; } int sys_socketpair(int domain, int type_and_flags, int proto, int *fds) { auto ret = do_syscall(SYS_socketpair, domain, type_and_flags, proto, fds, 0, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_getsockopt(int fd, int layer, int number, void *__restrict buffer, socklen_t *__restrict size) { auto ret = do_syscall(SYS_getsockopt, fd, layer, number, buffer, size, 0); if (int e = sc_error(ret); e) return e; return 0; } int sys_inotify_add_watch(int ifd, const char *path, uint32_t mask, int *wd) { auto ret = do_syscall(SYS_inotify_add_watch, ifd, path, mask); if (int e = sc_error(ret); e) return e; *wd = sc_int_result(ret); return 0; } int sys_inotify_rm_watch(int ifd, int wd) { auto ret = do_syscall(SYS_inotify_rm_watch, ifd, wd); if (int e = sc_error(ret); e) return e; return 0; } int sys_ttyname(int fd, char *buf, size_t size) { if (!isatty(fd)) return errno; char *procname; if(int e = asprintf(&procname, "/proc/self/fd/%i", fd); e) return ENOMEM; __ensure(procname); ssize_t l = readlink(procname, buf, size); free(procname); if (l < 0) return errno; else if ((size_t)l >= size) return ERANGE; buf[l] = '\0'; struct stat st1; struct stat st2; if (stat(buf, &st1) || fstat(fd, &st2)) return errno; if (st1.st_dev != st2.st_dev || st1.st_ino != st2.st_ino) return ENODEV; return 0; } int sys_pause() { #ifdef SYS_pause auto ret = do_syscall(SYS_pause); #else auto ret = do_syscall(SYS_ppoll, 0, 0, 0, 0); #endif if (int e = sc_error(ret); e) return e; return EINTR; } int sys_mlockall(int flags) { auto ret = do_syscall(SYS_mlockall, flags); if (int e = sc_error(ret); e) return e; return 0; } int sys_get_min_priority(int policy, int *out) { auto ret = do_syscall(SYS_sched_get_priority_min, policy); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_getschedparam(void *tcb, int *policy, struct sched_param *param) { auto t = reinterpret_cast(tcb); if(!t->tid) { return ESRCH; } auto ret_param = do_syscall(SYS_sched_getparam, t->tid, param); if (int e = sc_error(ret_param); e) return e; auto ret_sched = do_syscall(SYS_sched_getscheduler, t->tid, param); if (int e = sc_error(ret_sched); e) return e; *policy = sc_int_result(ret_sched); return 0; } int sys_setschedparam(void *tcb, int policy, const struct sched_param *param) { auto t = reinterpret_cast(tcb); if(!t->tid) { return ESRCH; } auto ret = do_syscall(SYS_sched_setscheduler, t->tid, policy, param); if (int e = sc_error(ret); e) return e; return 0; } int sys_if_indextoname(unsigned int index, char *name) { int fd = 0; int r = sys_socket(AF_UNIX, SOCK_DGRAM | SOCK_CLOEXEC, AF_UNSPEC, &fd); if(r) return r; struct ifreq ifr; ifr.ifr_ifindex = index; int ret = sys_ioctl(fd, SIOCGIFNAME, &ifr, NULL); close(fd); if(ret) { if(ret == ENODEV) return ENXIO; return ret; } strncpy(name, ifr.ifr_name, IF_NAMESIZE); return 0; } int sys_if_nametoindex(const char *name, unsigned int *ret) { int fd = 0; int r = sys_socket(AF_UNIX, SOCK_DGRAM | SOCK_CLOEXEC, AF_UNSPEC, &fd); if(r) return r; struct ifreq ifr; strncpy(ifr.ifr_name, name, sizeof ifr.ifr_name); r = sys_ioctl(fd, SIOCGIFINDEX, &ifr, NULL); close(fd); if(r) { return r; } *ret = ifr.ifr_ifindex; return 0; } int sys_ptsname(int fd, char *buffer, size_t length) { int index; if(int e = sys_ioctl(fd, TIOCGPTN, &index, NULL); e) return e; if((size_t)snprintf(buffer, length, "/dev/pts/%d", index) >= length) { return ERANGE; } return 0; } int sys_unlockpt(int fd) { int unlock = 0; if(int e = sys_ioctl(fd, TIOCSPTLCK, &unlock, NULL); e) return e; return 0; } int sys_thread_setname(void *tcb, const char *name) { if(strlen(name) > 15) { return ERANGE; } auto t = reinterpret_cast(tcb); char *path; int cs = 0; if(asprintf(&path, "/proc/self/task/%d/comm", t->tid) < 0) { return ENOMEM; } pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs); int fd; if(int e = sys_open(path, O_WRONLY, 0, &fd); e) { return e; } if(int e = sys_write(fd, name, strlen(name) + 1, NULL)) { return e; } sys_close(fd); pthread_setcancelstate(cs, 0); return 0; } int sys_thread_getname(void *tcb, char *name, size_t size) { auto t = reinterpret_cast(tcb); char *path; int cs = 0; ssize_t real_size = 0; if(asprintf(&path, "/proc/self/task/%d/comm", t->tid) < 0) { return ENOMEM; } pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs); int fd; if(int e = sys_open(path, O_RDONLY | O_CLOEXEC, 0, &fd); e) { return e; } if(int e = sys_read(fd, name, size, &real_size)) { return e; } name[real_size - 1] = 0; sys_close(fd); pthread_setcancelstate(cs, 0); if(static_cast(size) <= real_size) { return ERANGE; } return 0; } int sys_mlock(const void *addr, size_t length) { auto ret = do_syscall(SYS_mlock, addr, length); if (int e = sc_error(ret); e) return e; return 0; } int sys_munlock(const void *addr, size_t length) { auto ret = do_syscall(SYS_munlock, addr, length); if (int e = sc_error(ret); e) return e; return 0; } int sys_munlockall(void) { auto ret = do_syscall(SYS_munlockall); if (int e = sc_error(ret); e) return e; return 0; } int sys_mincore(void *addr, size_t length, unsigned char *vec) { auto ret = do_syscall(SYS_mincore, addr, length, vec); if (int e = sc_error(ret); e) return e; return 0; } int sys_memfd_create(const char *name, int flags, int *fd) { auto ret = do_syscall(SYS_memfd_create, name, flags); if (int e = sc_error(ret); e) return e; *fd = sc_int_result(ret); return 0; } int sys_fallocate(int fd, off_t offset, size_t size) { auto ret = do_syscall(SYS_fallocate, fd, 0, offset, size); if (int e = sc_error(ret); e) return e; return 0; } int sys_flock(int fd, int options) { auto ret = do_syscall(SYS_flock, fd, options); if (int e = sc_error(ret); e) return e; return 0; } int sys_seteuid(uid_t euid) { return sys_setresuid(-1, euid, -1); } int sys_vm_remap(void *pointer, size_t size, size_t new_size, void **window) { auto ret = do_syscall(SYS_mremap, pointer, size, new_size, MREMAP_MAYMOVE); // TODO: musl fixes up EPERM errors from the kernel. if(int e = sc_error(ret); e) return e; *window = sc_ptr_result(ret); return 0; } int sys_link(const char *old_path, const char *new_path) { #ifdef SYS_link auto ret = do_syscall(SYS_link, old_path, new_path); if (int e = sc_error(ret); e) return e; return 0; #else auto ret = do_syscall(SYS_linkat, AT_FDCWD, old_path, AT_FDCWD, new_path, 0); if (int e = sc_error(ret); e) return e; return 0; #endif } // Inspired by musl (src/stat/statvfs.c:28 fixup function) static void statfs_to_statvfs(struct statfs *from, struct statvfs *to) { *to = { .f_bsize = from->f_bsize, .f_frsize = from->f_frsize ? from->f_frsize : from->f_bsize, .f_blocks = from->f_blocks, .f_bfree = from->f_bfree, .f_bavail = from->f_bavail, .f_files = from->f_files, .f_ffree = from->f_ffree, .f_favail = from->f_ffree, .f_fsid = (unsigned long) from->f_fsid.__val[0], .f_flag = from->f_flags, .f_namemax = from->f_namelen, }; } int sys_statvfs(const char *path, struct statvfs *out) { struct statfs buf; if(auto ret = sys_statfs(path, &buf); ret != 0) { return ret; } statfs_to_statvfs(&buf, out); return 0; } int sys_fstatvfs(int fd, struct statvfs *out) { struct statfs buf; if(auto ret = sys_fstatfs(fd, &buf); ret != 0) { return ret; } statfs_to_statvfs(&buf, out); return 0; } int sys_sysconf(int num, long *ret) { switch(num) { case _SC_OPEN_MAX: { struct rlimit ru; if(int e = sys_getrlimit(RLIMIT_NOFILE, &ru); e) { return e; } *ret = (ru.rlim_cur == RLIM_INFINITY) ? -1 : ru.rlim_cur; break; } case _SC_NPROCESSORS_ONLN: { cpu_set_t set; CPU_ZERO(&set); if(int e = sys_getaffinity(0, sizeof(set), &set); e) { return e; } *ret = CPU_COUNT(&set); break; } case _SC_PHYS_PAGES: { struct sysinfo info; if(int e = sys_sysinfo(&info); e) { return e; } unsigned unit = (info.mem_unit) ? info.mem_unit : 1; *ret = std::min(long((info.totalram * unit) / PAGE_SIZE), LONG_MAX); break; } case _SC_CHILD_MAX: { struct rlimit ru; if(int e = sys_getrlimit(RLIMIT_NPROC, &ru); e) { return e; } *ret = (ru.rlim_cur == RLIM_INFINITY) ? -1 : ru.rlim_cur; break; } case _SC_LINE_MAX: { *ret = -1; break; } default: { return EINVAL; } } return 0; } int sys_semget(key_t key, int n, int fl, int *id) { auto ret = do_syscall(SYS_semget, key, n, fl); if(int e = sc_error(ret); e) return e; *id = sc_int_result(ret); return 0; } int sys_semctl(int semid, int semnum, int cmd, void *semun, int *out) { auto ret = do_syscall(SYS_semctl, semid, semnum, cmd | IPC_64, semun); if(int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_waitid(idtype_t idtype, id_t id, siginfo_t *info, int options) { auto ret = do_syscall(SYS_waitid, idtype, id, info, options, 0); if(int e = sc_error(ret); e) return e; return sc_int_result(ret); } #endif // __MLIBC_POSIX_OPTION #if __MLIBC_LINUX_OPTION #include int sys_reboot(int cmd) { auto ret = do_syscall(SYS_reboot, LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, nullptr); if (int e = sc_error(ret); e) return e; return 0; } #endif // __MLIBC_LINUX_OPTION int sys_times(struct tms *tms, clock_t *out) { auto ret = do_syscall(SYS_times, tms); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } pid_t sys_getpid() { auto ret = do_syscall(SYS_getpid); // getpid() always succeeds. return sc_int_result(ret); } pid_t sys_gettid() { auto ret = do_syscall(SYS_gettid); // gettid() always succeeds. return sc_int_result(ret); } uid_t sys_getuid() { auto ret = do_syscall(SYS_getuid); // getuid() always succeeds. return sc_int_result(ret); } uid_t sys_geteuid() { auto ret = do_syscall(SYS_geteuid); // geteuid() always succeeds. return sc_int_result(ret); } gid_t sys_getgid() { auto ret = do_syscall(SYS_getgid); // getgid() always succeeds. return sc_int_result(ret); } gid_t sys_getegid() { auto ret = do_syscall(SYS_getegid); // getegid() always succeeds. return sc_int_result(ret); } int sys_kill(int pid, int sig) { auto ret = do_syscall(SYS_kill, pid, sig); if (int e = sc_error(ret); e) return e; return 0; } int sys_vm_protect(void *pointer, size_t size, int prot) { auto ret = do_syscall(SYS_mprotect, pointer, size, prot); if (int e = sc_error(ret); e) return e; return 0; } void sys_thread_exit() { do_syscall(SYS_exit, 0); __builtin_trap(); } void sys_exit(int status) { do_syscall(SYS_exit_group, status); __builtin_trap(); } #endif // MLIBC_BUILDING_RTDL #define FUTEX_WAIT 0 #define FUTEX_WAKE 1 int sys_futex_tid() { auto ret = do_syscall(SYS_gettid); // gettid() always succeeds. return sc_int_result(ret); } int sys_futex_wait(int *pointer, int expected, const struct timespec *time) { auto ret = do_cp_syscall(SYS_futex, pointer, FUTEX_WAIT, expected, time); if (int e = sc_error(ret); e) return e; return 0; } int sys_futex_wake(int *pointer) { auto ret = do_syscall(SYS_futex, pointer, FUTEX_WAKE, INT_MAX); if (int e = sc_error(ret); e) return e; return 0; } int sys_sigsuspend(const sigset_t *set) { auto ret = do_syscall(SYS_rt_sigsuspend, set, NSIG / 8); if (int e = sc_error(ret); e) return e; return 0; } int sys_sigaltstack(const stack_t *ss, stack_t *oss) { auto ret = do_syscall(SYS_sigaltstack, ss, oss); if (int e = sc_error(ret); e) return e; return 0; } int sys_mkdir(const char *path, mode_t mode) { auto ret = do_syscall(SYS_mkdirat, AT_FDCWD, path, mode); if (int e = sc_error(ret); e) return e; return 0; } int sys_mkdirat(int dirfd, const char *path, mode_t mode) { auto ret = do_syscall(SYS_mkdirat, dirfd, path, mode); if (int e = sc_error(ret); e) return e; return 0; } int sys_mknodat(int dirfd, const char *path, int mode, int dev) { auto ret = do_syscall(SYS_mknodat, dirfd, path, mode, dev); if (int e = sc_error(ret); e) return e; return 0; } int sys_mkfifoat(int dirfd, const char *path, int mode) { return sys_mknodat(dirfd, path, mode | S_IFIFO, 0); } int sys_symlink(const char *target_path, const char *link_path) { auto ret = do_syscall(SYS_symlinkat, target_path, AT_FDCWD, link_path); if (int e = sc_error(ret); e) return e; return 0; } int sys_symlinkat(const char *target_path, int dirfd, const char *link_path) { auto ret = do_syscall(SYS_symlinkat, target_path, dirfd, link_path); if (int e = sc_error(ret); e) return e; return 0; } int sys_umask(mode_t mode, mode_t *old) { auto ret = do_syscall(SYS_umask, mode); if (int e = sc_error(ret); e) return e; *old = sc_int_result(ret); return 0; } int sys_chdir(const char *path) { auto ret = do_syscall(SYS_chdir, path); if (int e = sc_error(ret); e) return e; return 0; } int sys_fchdir(int fd) { auto ret = do_syscall(SYS_fchdir, fd); if (int e = sc_error(ret); e) return e; return 0; } int sys_rename(const char *old_path, const char *new_path) { return sys_renameat(AT_FDCWD, old_path, AT_FDCWD, new_path); } int sys_renameat(int old_dirfd, const char *old_path, int new_dirfd, const char *new_path) { #ifdef SYS_renameat2 auto ret = do_syscall(SYS_renameat2, old_dirfd, old_path, new_dirfd, new_path, 0); #else auto ret = do_syscall(SYS_renameat, old_dirfd, old_path, new_dirfd, new_path); #endif /* defined(SYS_renameat2) */ if (int e = sc_error(ret); e) return e; return 0; } int sys_rmdir(const char *path) { auto ret = do_syscall(SYS_unlinkat, AT_FDCWD, path, AT_REMOVEDIR); if (int e = sc_error(ret); e) return e; return 0; } int sys_ftruncate(int fd, size_t size) { auto ret = do_syscall(SYS_ftruncate, fd, size); if (int e = sc_error(ret); e) return e; return 0; } int sys_readlink(const char *path, void *buf, size_t bufsiz, ssize_t *len) { auto ret = do_syscall(SYS_readlinkat, AT_FDCWD, path, buf, bufsiz); if (int e = sc_error(ret); e) return e; *len = sc_int_result(ret); return 0; } int sys_getrlimit(int resource, struct rlimit *limit) { auto ret = do_syscall(SYS_getrlimit, resource, limit); if (int e = sc_error(ret); e) return e; return 0; } int sys_setrlimit(int resource, const struct rlimit *limit) { auto ret = do_syscall(SYS_setrlimit, resource, limit); if (int e = sc_error(ret); e) return e; return 0; } pid_t sys_getppid() { auto ret = do_syscall(SYS_getppid); // getppid() always succeeds. return sc_int_result(ret); } int sys_setpgid(pid_t pid, pid_t pgid) { auto ret = do_syscall(SYS_setpgid, pid, pgid); if (int e = sc_error(ret); e) return e; return 0; } int sys_getsid(pid_t pid, pid_t *sid) { auto ret = do_syscall(SYS_getsid, pid); if (int e = sc_error(ret); e) return e; *sid = sc_int_result(ret); return 0; } int sys_setsid(pid_t *sid) { auto ret = do_syscall(SYS_setsid); if (int e = sc_error(ret); e) return e; *sid = sc_int_result(ret); return 0; } int sys_setuid(uid_t uid) { auto ret = do_syscall(SYS_setuid, uid); if (int e = sc_error(ret); e) return e; return 0; } int sys_setgid(gid_t gid) { auto ret = do_syscall(SYS_setgid, gid); if (int e = sc_error(ret); e) return e; return 0; } int sys_getpgid(pid_t pid, pid_t *out) { auto ret = do_syscall(SYS_getpgid, pid); if (int e = sc_error(ret); e) return e; *out = sc_int_result(ret); return 0; } int sys_getgroups(size_t size, const gid_t *list, int *retval) { auto ret = do_syscall(SYS_getgroups, size, list); if (int e = sc_error(ret); e) return e; *retval = sc_int_result(ret); return 0; } int sys_dup(int fd, int flags, int *newfd) { __ensure(!flags); auto ret = do_cp_syscall(SYS_dup, fd); if (int e = sc_error(ret); e) return e; *newfd = sc_int_result(ret); return 0; } void sys_sync() { do_syscall(SYS_sync); } int sys_fsync(int fd) { auto ret = do_syscall(SYS_fsync, fd); if (int e = sc_error(ret); e) return e; return 0; } int sys_fdatasync(int fd) { auto ret = do_syscall(SYS_fdatasync, fd); if (int e = sc_error(ret); e) return e; return 0; } int sys_getrandom(void *buffer, size_t length, int flags, ssize_t *bytes_written) { auto ret = do_syscall(SYS_getrandom, buffer, length, flags); if (int e = sc_error(ret); e) return e; *bytes_written = sc_int_result(ret); return 0; } int sys_getentropy(void *buffer, size_t length) { ssize_t written; return sys_getrandom(buffer, length, 0, &written); } int sys_setxattr(const char *path, const char *name, const void *val, size_t size, int flags) { auto ret = do_syscall(SYS_setxattr, path, name, val, size, flags); return sc_error(ret); } int sys_lsetxattr(const char *path, const char *name, const void *val, size_t size, int flags) { auto ret = do_syscall(SYS_lsetxattr, path, name, val, size, flags); return sc_error(ret); } int sys_fsetxattr(int fd, const char *name, const void *val, size_t size, int flags) { auto ret = do_syscall(SYS_fsetxattr, fd, name, val, size, flags); return sc_error(ret); } int sys_getxattr(const char *path, const char *name, void *val, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_getxattr, path, name, val, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_lgetxattr(const char *path, const char *name, void *val, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_lgetxattr, path, name, val, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_fgetxattr(int fd, const char *name, void *val, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_fgetxattr, fd, name, val, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_removexattr(const char *path, const char *name) { auto ret = do_syscall(SYS_removexattr, path, name); return sc_error(ret); } int sys_lremovexattr(const char *path, const char *name) { auto ret = do_syscall(SYS_lremovexattr, path, name); return sc_error(ret); } int sys_fremovexattr(int fd, const char *name) { auto ret = do_syscall(SYS_fremovexattr, fd, name); return sc_error(ret); } int sys_listxattr(const char *path, char *list, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_listxattr, path, list, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_llistxattr(const char *path, char *list, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_llistxattr, path, list, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_flistxattr(int fd, char *list, size_t size, ssize_t *nread) { auto ret = do_syscall(SYS_flistxattr, fd, list, size); if (int e = sc_error(ret); e) { return e; } *nread = sc_int_result(ret); return 0; } int sys_sigtimedwait(const sigset_t *__restrict set, siginfo_t *__restrict info, const struct timespec *__restrict timeout, int *out_signal) { auto ret = do_syscall(SYS_rt_sigtimedwait, set, info, timeout, NSIG / 8); if (int e = sc_error(ret); e) return e; *out_signal = sc_int_result(ret); return 0; } #if __MLIBC_BSD_OPTION int sys_brk(void **out) { auto ret = do_syscall(SYS_brk, 0); if(int e = sc_error(ret); e) { return e; } *out = (void *) sc_int_result(ret); return 0; } #endif // __MLIBC_BSD_OPTION #if __MLIBC_GLIBC_OPTION int sys_personality(unsigned long persona, int *out) { auto ret = do_syscall(SYS_personality, persona); if(int e = sc_error(ret); e) { return e; } *out = sc_int_result(ret); return 0; } int sys_ioperm(unsigned long int from, unsigned long int num, int turn_on) { #if defined(SYS_ioperm) auto ret = do_syscall(SYS_ioperm, from, num, turn_on); if(int e = sc_error(ret); e) { return e; } return 0; #else (void) from; (void) num; (void) turn_on; return ENOSYS; #endif } int sys_iopl(int level) { #if defined(SYS_iopl) auto ret = do_syscall(SYS_iopl, level); if(int e = sc_error(ret); e) { return e; } return 0; #else (void) level; return ENOSYS; #endif } #endif // __MLIBC_GLIBC_OPTION } // namespace mlibc