/* * Copyright (c) 2023-2025 Ian Marco Moffett and the Osmora Team. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Hyra nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include static inline uint32_t rotr(uint32_t x, int n) { return (x >> n) | (x << (32 - n)); } static inline uint32_t step1(uint32_t e, uint32_t f, uint32_t g) { return (rotr(e, 6) ^ rotr(e, 11) ^ rotr(e, 25)) + ((e & f) ^ ((~ e) & g)); } static inline uint32_t step2(uint32_t a, uint32_t b, uint32_t c) { return (rotr(a, 2) ^ rotr(a, 13) ^ rotr(a, 22)) + ((a & b) ^ (a & c) ^ (b & c)); } static inline void update_w(uint32_t *w, int i, const uint8_t *buffer) { int j; for (j = 0; j < 16; j++) { if (i < 16){ w[j] = ((uint32_t)buffer[0] << 24) | ((uint32_t)buffer[1] << 16) | ((uint32_t)buffer[2] << 8) | ((uint32_t)buffer[3]); buffer += 4; }else { uint32_t a = w[(j + 1) & 15]; uint32_t b = w[(j + 14) & 15]; uint32_t s0 = (rotr(a, 7) ^ rotr(a, 18) ^ (a >> 3)); uint32_t s1 = (rotr(b, 17) ^ rotr(b, 19) ^ (b >> 10)); w[j] += w[(j + 9) & 15] + s0 + s1; } } } static void sha256_block(struct sha256 *sha) { uint32_t *state = sha->state; static const uint32_t k[8 * 8] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; uint32_t a = state[0]; uint32_t b = state[1]; uint32_t c = state[2]; uint32_t d = state[3]; uint32_t e = state[4]; uint32_t f = state[5]; uint32_t g = state[6]; uint32_t h = state[7]; uint32_t w[16]; int i, j; for (i = 0; i < 64; i += 16) { update_w(w, i, sha->buffer); for (j = 0; j < 16; j += 4) { uint32_t temp; temp = h + step1(e, f, g) + k[i + j + 0] + w[j + 0]; h = temp + d; d = temp + step2(a, b, c); temp = g + step1(h, e, f) + k[i + j + 1] + w[j + 1]; g = temp + c; c = temp + step2(d, a, b); temp = f + step1(g, h, e) + k[i + j + 2] + w[j + 2]; f = temp + b; b = temp + step2(c, d, a); temp = e + step1(f, g, h) + k[i + j + 3] + w[j + 3]; e = temp + a; a = temp + step2(b, c, d); } } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } void sha256_init(struct sha256 *sha) { sha->state[0] = 0x6a09e667; sha->state[1] = 0xbb67ae85; sha->state[2] = 0x3c6ef372; sha->state[3] = 0xa54ff53a; sha->state[4] = 0x510e527f; sha->state[5] = 0x9b05688c; sha->state[6] = 0x1f83d9ab; sha->state[7] = 0x5be0cd19; sha->n_bits = 0; sha->buffer_counter = 0; } void sha256_append_byte(struct sha256 *sha, uint8_t byte) { sha->buffer[sha->buffer_counter++] = byte; sha->n_bits += 8; if (sha->buffer_counter == 64) { sha->buffer_counter = 0; sha256_block(sha); } } void sha256_append(struct sha256 *sha, const void *src, size_t n_bytes) { const uint8_t *bytes = (const uint8_t*)src; size_t i; for (i = 0; i < n_bytes; i++) { sha256_append_byte(sha, bytes[i]); } } void sha256_finalize(struct sha256 *sha) { int i; uint64_t n_bits = sha->n_bits; sha256_append_byte(sha, 0x80); while (sha->buffer_counter != 56) { sha256_append_byte(sha, 0); } for (i = 7; i >= 0; i--) { uint8_t byte = (n_bits >> 8 * i) & 0xff; sha256_append_byte(sha, byte); } } void sha256_finalize_hex(struct sha256 *sha, char *dst_hex65) { int i, j; sha256_finalize(sha); for (i = 0; i < 8; i++) { for (j = 7; j >= 0; j--) { uint8_t nibble = (sha->state[i] >> j * 4) & 0xf; *dst_hex65++ = "0123456789abcdef"[nibble]; } } *dst_hex65 = '\0'; } void sha256_finalize_bytes(struct sha256 *sha, void *dst_bytes32) { uint8_t *ptr = (uint8_t*)dst_bytes32; int i, j; sha256_finalize(sha); for (i = 0; i < 8; i++) { for (j = 3; j >= 0; j--) { *ptr++ = (sha->state[i] >> j * 8) & 0xff; } } } void sha256_hex(const void *src, size_t n_bytes, char *dst_hex65) { struct sha256 sha; sha256_init(&sha); sha256_append(&sha, src, n_bytes); sha256_finalize_hex(&sha, dst_hex65); } void sha256_bytes(const void *src, size_t n_bytes, void *dst_bytes32){ struct sha256 sha; sha256_init(&sha); sha256_append(&sha, src, n_bytes); sha256_finalize_bytes(&sha, dst_bytes32); }