From f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 Mon Sep 17 00:00:00 2001 From: Ian Moffett Date: Thu, 7 Mar 2024 17:28:52 -0500 Subject: build: Build mlibc + add distclean target Signed-off-by: Ian Moffett --- lib/mlibc/options/ansi/musl-generic-math/erfl.c | 353 ------------------------ 1 file changed, 353 deletions(-) delete mode 100644 lib/mlibc/options/ansi/musl-generic-math/erfl.c (limited to 'lib/mlibc/options/ansi/musl-generic-math/erfl.c') diff --git a/lib/mlibc/options/ansi/musl-generic-math/erfl.c b/lib/mlibc/options/ansi/musl-generic-math/erfl.c deleted file mode 100644 index e267c23..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/erfl.c +++ /dev/null @@ -1,353 +0,0 @@ -/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_erfl.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * Copyright (c) 2008 Stephen L. Moshier - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ -/* double erf(double x) - * double erfc(double x) - * x - * 2 |\ - * erf(x) = --------- | exp(-t*t)dt - * sqrt(pi) \| - * 0 - * - * erfc(x) = 1-erf(x) - * Note that - * erf(-x) = -erf(x) - * erfc(-x) = 2 - erfc(x) - * - * Method: - * 1. For |x| in [0, 0.84375] - * erf(x) = x + x*R(x^2) - * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] - * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] - * Remark. The formula is derived by noting - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) - * and that - * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 - * is close to one. The interval is chosen because the fix - * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is - * near 0.6174), and by some experiment, 0.84375 is chosen to - * guarantee the error is less than one ulp for erf. - * - * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and - * c = 0.84506291151 rounded to single (24 bits) - * erf(x) = sign(x) * (c + P1(s)/Q1(s)) - * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 - * 1+(c+P1(s)/Q1(s)) if x < 0 - * Remark: here we use the taylor series expansion at x=1. - * erf(1+s) = erf(1) + s*Poly(s) - * = 0.845.. + P1(s)/Q1(s) - * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] - * - * 3. For x in [1.25,1/0.35(~2.857143)], - * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z)) - * z=1/x^2 - * erf(x) = 1 - erfc(x) - * - * 4. For x in [1/0.35,107] - * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 - * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z)) - * if -6.666 x >= 107 - * erf(x) = sign(x) *(1 - tiny) (raise inexact) - * erfc(x) = tiny*tiny (raise underflow) if x > 0 - * = 2 - tiny if x<0 - * - * 7. Special case: - * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, - * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, - * erfc/erf(NaN) is NaN - */ - - -#include "libm.h" - -#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 -long double erfl(long double x) -{ - return erf(x); -} -long double erfcl(long double x) -{ - return erfc(x); -} -#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 -static const long double -erx = 0.845062911510467529296875L, - -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -/* 8 * (2/sqrt(pi) - 1) */ -efx8 = 1.0270333367641005911692712249723613735048E0L, -pp[6] = { - 1.122751350964552113068262337278335028553E6L, - -2.808533301997696164408397079650699163276E6L, - -3.314325479115357458197119660818768924100E5L, - -6.848684465326256109712135497895525446398E4L, - -2.657817695110739185591505062971929859314E3L, - -1.655310302737837556654146291646499062882E2L, -}, -qq[6] = { - 8.745588372054466262548908189000448124232E6L, - 3.746038264792471129367533128637019611485E6L, - 7.066358783162407559861156173539693900031E5L, - 7.448928604824620999413120955705448117056E4L, - 4.511583986730994111992253980546131408924E3L, - 1.368902937933296323345610240009071254014E2L, - /* 1.000000000000000000000000000000000000000E0 */ -}, - -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x) - -0.15625 <= x <= +.25 - Peak relative error 8.5e-22 */ -pa[8] = { - -1.076952146179812072156734957705102256059E0L, - 1.884814957770385593365179835059971587220E2L, - -5.339153975012804282890066622962070115606E1L, - 4.435910679869176625928504532109635632618E1L, - 1.683219516032328828278557309642929135179E1L, - -2.360236618396952560064259585299045804293E0L, - 1.852230047861891953244413872297940938041E0L, - 9.394994446747752308256773044667843200719E-2L, -}, -qa[7] = { - 4.559263722294508998149925774781887811255E2L, - 3.289248982200800575749795055149780689738E2L, - 2.846070965875643009598627918383314457912E2L, - 1.398715859064535039433275722017479994465E2L, - 6.060190733759793706299079050985358190726E1L, - 2.078695677795422351040502569964299664233E1L, - 4.641271134150895940966798357442234498546E0L, - /* 1.000000000000000000000000000000000000000E0 */ -}, - -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2)) - 1/2.85711669921875 < 1/x < 1/1.25 - Peak relative error 3.1e-21 */ -ra[] = { - 1.363566591833846324191000679620738857234E-1L, - 1.018203167219873573808450274314658434507E1L, - 1.862359362334248675526472871224778045594E2L, - 1.411622588180721285284945138667933330348E3L, - 5.088538459741511988784440103218342840478E3L, - 8.928251553922176506858267311750789273656E3L, - 7.264436000148052545243018622742770549982E3L, - 2.387492459664548651671894725748959751119E3L, - 2.220916652813908085449221282808458466556E2L, -}, -sa[] = { - -1.382234625202480685182526402169222331847E1L, - -3.315638835627950255832519203687435946482E2L, - -2.949124863912936259747237164260785326692E3L, - -1.246622099070875940506391433635999693661E4L, - -2.673079795851665428695842853070996219632E4L, - -2.880269786660559337358397106518918220991E4L, - -1.450600228493968044773354186390390823713E4L, - -2.874539731125893533960680525192064277816E3L, - -1.402241261419067750237395034116942296027E2L, - /* 1.000000000000000000000000000000000000000E0 */ -}, - -/* - * Coefficients for approximation to erfc in [1/.35,107] - */ -/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2)) - 1/6.6666259765625 < 1/x < 1/2.85711669921875 - Peak relative error 4.2e-22 */ -rb[] = { - -4.869587348270494309550558460786501252369E-5L, - -4.030199390527997378549161722412466959403E-3L, - -9.434425866377037610206443566288917589122E-2L, - -9.319032754357658601200655161585539404155E-1L, - -4.273788174307459947350256581445442062291E0L, - -8.842289940696150508373541814064198259278E0L, - -7.069215249419887403187988144752613025255E0L, - -1.401228723639514787920274427443330704764E0L, -}, -sb[] = { - 4.936254964107175160157544545879293019085E-3L, - 1.583457624037795744377163924895349412015E-1L, - 1.850647991850328356622940552450636420484E0L, - 9.927611557279019463768050710008450625415E0L, - 2.531667257649436709617165336779212114570E1L, - 2.869752886406743386458304052862814690045E1L, - 1.182059497870819562441683560749192539345E1L, - /* 1.000000000000000000000000000000000000000E0 */ -}, -/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2)) - 1/107 <= 1/x <= 1/6.6666259765625 - Peak relative error 1.1e-21 */ -rc[] = { - -8.299617545269701963973537248996670806850E-5L, - -6.243845685115818513578933902532056244108E-3L, - -1.141667210620380223113693474478394397230E-1L, - -7.521343797212024245375240432734425789409E-1L, - -1.765321928311155824664963633786967602934E0L, - -1.029403473103215800456761180695263439188E0L, -}, -sc[] = { - 8.413244363014929493035952542677768808601E-3L, - 2.065114333816877479753334599639158060979E-1L, - 1.639064941530797583766364412782135680148E0L, - 4.936788463787115555582319302981666347450E0L, - 5.005177727208955487404729933261347679090E0L, - /* 1.000000000000000000000000000000000000000E0 */ -}; - -static long double erfc1(long double x) -{ - long double s,P,Q; - - s = fabsl(x) - 1; - P = pa[0] + s * (pa[1] + s * (pa[2] + - s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); - Q = qa[0] + s * (qa[1] + s * (qa[2] + - s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); - return 1 - erx - P / Q; -} - -static long double erfc2(uint32_t ix, long double x) -{ - union ldshape u; - long double s,z,R,S; - - if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */ - return erfc1(x); - - x = fabsl(x); - s = 1 / (x * x); - if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */ - R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + - s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); - S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + - s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); - } else if (ix < 0x4001d555) { /* 2.857 <= |x| < 6.6666259765625 */ - R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + - s * (rb[5] + s * (rb[6] + s * rb[7])))))); - S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + - s * (sb[5] + s * (sb[6] + s)))))); - } else { /* 6.666 <= |x| < 107 (erfc only) */ - R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] + - s * (rc[4] + s * rc[5])))); - S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + - s * (sc[4] + s)))); - } - u.f = x; - u.i.m &= -1ULL << 40; - z = u.f; - return expl(-z*z - 0.5625) * expl((z - x) * (z + x) + R / S) / x; -} - -long double erfl(long double x) -{ - long double r, s, z, y; - union ldshape u = {x}; - uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; - int sign = u.i.se >> 15; - - if (ix >= 0x7fff0000) - /* erf(nan)=nan, erf(+-inf)=+-1 */ - return 1 - 2*sign + 1/x; - if (ix < 0x3ffed800) { /* |x| < 0.84375 */ - if (ix < 0x3fde8000) { /* |x| < 2**-33 */ - return 0.125 * (8 * x + efx8 * x); /* avoid underflow */ - } - z = x * x; - r = pp[0] + z * (pp[1] + - z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); - s = qq[0] + z * (qq[1] + - z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); - y = r / s; - return x + x * y; - } - if (ix < 0x4001d555) /* |x| < 6.6666259765625 */ - y = 1 - erfc2(ix,x); - else - y = 1 - 0x1p-16382L; - return sign ? -y : y; -} - -long double erfcl(long double x) -{ - long double r, s, z, y; - union ldshape u = {x}; - uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; - int sign = u.i.se >> 15; - - if (ix >= 0x7fff0000) - /* erfc(nan) = nan, erfc(+-inf) = 0,2 */ - return 2*sign + 1/x; - if (ix < 0x3ffed800) { /* |x| < 0.84375 */ - if (ix < 0x3fbe0000) /* |x| < 2**-65 */ - return 1.0 - x; - z = x * x; - r = pp[0] + z * (pp[1] + - z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); - s = qq[0] + z * (qq[1] + - z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); - y = r / s; - if (ix < 0x3ffd8000) /* x < 1/4 */ - return 1.0 - (x + x * y); - return 0.5 - (x - 0.5 + x * y); - } - if (ix < 0x4005d600) /* |x| < 107 */ - return sign ? 2 - erfc2(ix,x) : erfc2(ix,x); - y = 0x1p-16382L; - return sign ? 2 - y : y*y; -} -#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 -// TODO: broken implementation to make things compile -long double erfl(long double x) -{ - return erf(x); -} -long double erfcl(long double x) -{ - return erfc(x); -} -#endif -- cgit v1.2.3