From f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 Mon Sep 17 00:00:00 2001 From: Ian Moffett Date: Thu, 7 Mar 2024 17:28:52 -0500 Subject: build: Build mlibc + add distclean target Signed-off-by: Ian Moffett --- lib/mlibc/options/ansi/musl-generic-math/cbrtf.c | 66 ------------------------ 1 file changed, 66 deletions(-) delete mode 100644 lib/mlibc/options/ansi/musl-generic-math/cbrtf.c (limited to 'lib/mlibc/options/ansi/musl-generic-math/cbrtf.c') diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c deleted file mode 100644 index 89c2c86..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c +++ /dev/null @@ -1,66 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ -/* - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - * Debugged and optimized by Bruce D. Evans. - */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* cbrtf(x) - * Return cube root of x - */ - -#include -#include - -static const unsigned -B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */ -B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ - -float cbrtf(float x) -{ - double_t r,T; - union {float f; uint32_t i;} u = {x}; - uint32_t hx = u.i & 0x7fffffff; - - if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */ - return x + x; - - /* rough cbrt to 5 bits */ - if (hx < 0x00800000) { /* zero or subnormal? */ - if (hx == 0) - return x; /* cbrt(+-0) is itself */ - u.f = x*0x1p24f; - hx = u.i & 0x7fffffff; - hx = hx/3 + B2; - } else - hx = hx/3 + B1; - u.i &= 0x80000000; - u.i |= hx; - - /* - * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In - * double precision so that its terms can be arranged for efficiency - * without causing overflow or underflow. - */ - T = u.f; - r = T*T*T; - T = T*((double_t)x+x+r)/(x+r+r); - - /* - * Second step Newton iteration to 47 bits. In double precision for - * efficiency and accuracy. - */ - r = T*T*T; - T = T*((double_t)x+x+r)/(x+r+r); - - /* rounding to 24 bits is perfect in round-to-nearest mode */ - return T; -} -- cgit v1.2.3