From f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 Mon Sep 17 00:00:00 2001 From: Ian Moffett Date: Thu, 7 Mar 2024 17:28:52 -0500 Subject: build: Build mlibc + add distclean target Signed-off-by: Ian Moffett --- lib/mlibc/options/ansi/musl-generic-math/__cos.c | 71 ------------------------ 1 file changed, 71 deletions(-) delete mode 100644 lib/mlibc/options/ansi/musl-generic-math/__cos.c (limited to 'lib/mlibc/options/ansi/musl-generic-math/__cos.c') diff --git a/lib/mlibc/options/ansi/musl-generic-math/__cos.c b/lib/mlibc/options/ansi/musl-generic-math/__cos.c deleted file mode 100644 index 46cefb3..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/__cos.c +++ /dev/null @@ -1,71 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * __cos( x, y ) - * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * - * Algorithm - * 1. Since cos(-x) = cos(x), we need only to consider positive x. - * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. - * 3. cos(x) is approximated by a polynomial of degree 14 on - * [0,pi/4] - * 4 14 - * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x - * where the remez error is - * - * | 2 4 6 8 10 12 14 | -58 - * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 - * | | - * - * 4 6 8 10 12 14 - * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then - * cos(x) ~ 1 - x*x/2 + r - * since cos(x+y) ~ cos(x) - sin(x)*y - * ~ cos(x) - x*y, - * a correction term is necessary in cos(x) and hence - * cos(x+y) = 1 - (x*x/2 - (r - x*y)) - * For better accuracy, rearrange to - * cos(x+y) ~ w + (tmp + (r-x*y)) - * where w = 1 - x*x/2 and tmp is a tiny correction term - * (1 - x*x/2 == w + tmp exactly in infinite precision). - * The exactness of w + tmp in infinite precision depends on w - * and tmp having the same precision as x. If they have extra - * precision due to compiler bugs, then the extra precision is - * only good provided it is retained in all terms of the final - * expression for cos(). Retention happens in all cases tested - * under FreeBSD, so don't pessimize things by forcibly clipping - * any extra precision in w. - */ - -#include "libm.h" - -static const double -C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ -C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ -C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ -C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ -C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ -C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ - -double __cos(double x, double y) -{ - double_t hz,z,r,w; - - z = x*x; - w = z*z; - r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6)); - hz = 0.5*z; - w = 1.0-hz; - return w + (((1.0-w)-hz) + (z*r-x*y)); -} -- cgit v1.2.3