summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__cos.c71
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__cosdf.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__cosl.c96
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__expo2.c16
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__expo2f.c16
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__fpclassify.c11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__fpclassifyf.c11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__fpclassifyl.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__invtrigl.c63
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__invtrigl.h11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__polevll.c93
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__rem_pio2.c177
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__rem_pio2_large.c442
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__rem_pio2f.c75
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__rem_pio2l.c141
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__signbit.c13
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__signbitf.c11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__signbitl.c14
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__sin.c64
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__sindf.c36
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__sinl.c78
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__tan.c110
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__tandf.c54
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__tanl.c143
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acos.c101
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acosf.c71
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acosh.c24
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acoshf.c26
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acoshl.c29
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acosl.c67
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asin.c107
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asinf.c61
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asinh.c28
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asinhf.c28
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asinhl.c41
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/asinl.c71
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atan.c116
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atan2.c107
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atan2f.c83
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atan2l.c85
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atanf.c94
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atanh.c29
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atanhf.c28
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atanhl.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/atanl.c184
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cbrt.c103
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cbrtf.c66
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cbrtl.c124
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ceil.c31
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ceilf.c27
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ceill.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/copysign.c8
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/copysignf.c10
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/copysignl.c16
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cos.c77
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cosf.c78
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cosh.c40
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/coshf.c33
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/coshl.c47
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cosl.c39
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/erf.c273
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/erff.c183
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/erfl.c353
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp.c134
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp10.c26
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp10f.c24
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp10l.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp2.c375
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp2f.c126
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp2l.c619
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expf.c83
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expl.c128
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expm1.c201
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expm1f.c111
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expm1l.c123
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fabs.c9
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fabsf.c9
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fabsl.c15
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fdim.c10
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fdimf.c10
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fdiml.c18
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/finite.c7
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/finitef.c7
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/floor.c31
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/floorf.c27
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/floorl.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fma.c194
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmaf.c93
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmal.c293
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmax.c13
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmaxf.c13
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmaxl.c21
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmin.c13
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fminf.c13
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fminl.c21
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmod.c68
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmodf.c65
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/fmodl.c105
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/frexp.c23
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/frexpf.c23
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/frexpl.c29
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/hypot.c67
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/hypotf.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/hypotl.c66
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ilogb.c26
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ilogbf.c26
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ilogbl.c55
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/j0.c375
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/j0f.c314
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/j1.c362
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/j1f.c310
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/jn.c280
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/jnf.c202
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ldexp.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ldexpf.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/ldexpl.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgamma.c9
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgamma_r.c285
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgammaf.c9
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgammaf_r.c220
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgammal.c361
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/libm.h186
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llrint.c8
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llrintf.c8
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llrintl.c36
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llround.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llroundf.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/llroundl.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log.c118
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log10.c101
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log10f.c77
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log10l.c191
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log1p.c122
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log1pf.c77
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log1pl.c177
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log2.c122
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log2f.c74
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log2l.c182
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logb.c17
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logbf.c10
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logbl.c16
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logf.c69
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logl.c175
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lrint.c46
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lrintf.c8
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lrintl.c36
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lround.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lroundf.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lroundl.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/modf.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/modff.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/modfl.c53
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nan.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nanf.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nanl.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nearbyint.c20
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nearbyintf.c18
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nearbyintl.c26
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nextafter.c31
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nextafterf.c30
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nextafterl.c75
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nexttoward.c42
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nexttowardf.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/nexttowardl.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/pow.c328
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/powf.c259
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/powl.c522
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remainder.c11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remainderf.c11
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remainderl.c15
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remquo.c82
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remquof.c82
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/remquol.c124
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/rint.c28
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/rintf.c30
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/rintl.c29
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/round.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/roundf.c36
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/roundl.c37
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalb.c35
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalbf.c32
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalbln.c12
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalblnf.c12
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalblnl.c20
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalbn.c33
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalbnf.c31
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/scalbnl.c36
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/signgam.c5
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/significand.c7
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/significandf.c7
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sin.c78
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sincos.c69
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sincosf.c117
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sincosl.c60
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sinf.c76
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sinh.c39
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sinhf.c31
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sinhl.c43
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sinl.c41
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sqrt.c185
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sqrtf.c84
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sqrtl.c7
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tan.c70
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tanf.c64
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tanh.c45
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tanhf.c39
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tanhl.c48
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tanl.c29
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tgamma.c222
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tgammaf.c6
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tgammal.c281
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/trunc.c19
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/truncf.c19
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/truncl.c34
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/weak_alias.h7
215 files changed, 16826 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__cos.c b/lib/mlibc/options/ansi/musl-generic-math/__cos.c
new file mode 100644
index 0000000..46cefb3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__cos.c
@@ -0,0 +1,71 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * __cos( x, y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ * 3. cos(x) is approximated by a polynomial of degree 14 on
+ * [0,pi/4]
+ * 4 14
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ * where the remez error is
+ *
+ * | 2 4 6 8 10 12 14 | -58
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+ * | |
+ *
+ * 4 6 8 10 12 14
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+ * cos(x) ~ 1 - x*x/2 + r
+ * since cos(x+y) ~ cos(x) - sin(x)*y
+ * ~ cos(x) - x*y,
+ * a correction term is necessary in cos(x) and hence
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ * For better accuracy, rearrange to
+ * cos(x+y) ~ w + (tmp + (r-x*y))
+ * where w = 1 - x*x/2 and tmp is a tiny correction term
+ * (1 - x*x/2 == w + tmp exactly in infinite precision).
+ * The exactness of w + tmp in infinite precision depends on w
+ * and tmp having the same precision as x. If they have extra
+ * precision due to compiler bugs, then the extra precision is
+ * only good provided it is retained in all terms of the final
+ * expression for cos(). Retention happens in all cases tested
+ * under FreeBSD, so don't pessimize things by forcibly clipping
+ * any extra precision in w.
+ */
+
+#include "libm.h"
+
+static const double
+C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+double __cos(double x, double y)
+{
+ double_t hz,z,r,w;
+
+ z = x*x;
+ w = z*z;
+ r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
+ hz = 0.5*z;
+ w = 1.0-hz;
+ return w + (((1.0-w)-hz) + (z*r-x*y));
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__cosdf.c b/lib/mlibc/options/ansi/musl-generic-math/__cosdf.c
new file mode 100644
index 0000000..2124989
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__cosdf.c
@@ -0,0 +1,35 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
+static const double
+C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
+C1 = 0x155553e1053a42.0p-57, /* 0.0416666233237390631894 */
+C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
+C3 = 0x199342e0ee5069.0p-68; /* 0.0000243904487962774090654 */
+
+float __cosdf(double x)
+{
+ double_t r, w, z;
+
+ /* Try to optimize for parallel evaluation as in __tandf.c. */
+ z = x*x;
+ w = z*z;
+ r = C2+z*C3;
+ return ((1.0+z*C0) + w*C1) + (w*z)*r;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__cosl.c b/lib/mlibc/options/ansi/musl-generic-math/__cosl.c
new file mode 100644
index 0000000..fa522dd
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__cosl.c
@@ -0,0 +1,96 @@
+/* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */
+/* origin: FreeBSD /usr/src/lib/msun/ld128/k_cosl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+
+#include "libm.h"
+
+#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#if LDBL_MANT_DIG == 64
+/*
+ * ld80 version of __cos.c. See __cos.c for most comments.
+ */
+/*
+ * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
+ * |cos(x) - c(x)| < 2**-75.1
+ *
+ * The coefficients of c(x) were generated by a pari-gp script using
+ * a Remez algorithm that searches for the best higher coefficients
+ * after rounding leading coefficients to a specified precision.
+ *
+ * Simpler methods like Chebyshev or basic Remez barely suffice for
+ * cos() in 64-bit precision, because we want the coefficient of x^2
+ * to be precisely -0.5 so that multiplying by it is exact, and plain
+ * rounding of the coefficients of a good polynomial approximation only
+ * gives this up to about 64-bit precision. Plain rounding also gives
+ * a mediocre approximation for the coefficient of x^4, but a rounding
+ * error of 0.5 ulps for this coefficient would only contribute ~0.01
+ * ulps to the final error, so this is unimportant. Rounding errors in
+ * higher coefficients are even less important.
+ *
+ * In fact, coefficients above the x^4 one only need to have 53-bit
+ * precision, and this is more efficient. We get this optimization
+ * almost for free from the complications needed to search for the best
+ * higher coefficients.
+ */
+static const long double
+C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
+static const double
+C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
+C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
+C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
+C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
+C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
+C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
+#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))))
+#elif LDBL_MANT_DIG == 113
+/*
+ * ld128 version of __cos.c. See __cos.c for most comments.
+ */
+/*
+ * Domain [-0.7854, 0.7854], range ~[-1.80e-37, 1.79e-37]:
+ * |cos(x) - c(x))| < 2**-122.0
+ *
+ * 113-bit precision requires more care than 64-bit precision, since
+ * simple methods give a minimax polynomial with coefficient for x^2
+ * that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
+ * above for more details.
+ */
+static const long double
+C1 = 0.04166666666666666666666666666666658424671L,
+C2 = -0.001388888888888888888888888888863490893732L,
+C3 = 0.00002480158730158730158730158600795304914210L,
+C4 = -0.2755731922398589065255474947078934284324e-6L,
+C5 = 0.2087675698786809897659225313136400793948e-8L,
+C6 = -0.1147074559772972315817149986812031204775e-10L,
+C7 = 0.4779477332386808976875457937252120293400e-13L;
+static const double
+C8 = -0.1561920696721507929516718307820958119868e-15,
+C9 = 0.4110317413744594971475941557607804508039e-18,
+C10 = -0.8896592467191938803288521958313920156409e-21,
+C11 = 0.1601061435794535138244346256065192782581e-23;
+#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+ \
+ z*(C8+z*(C9+z*(C10+z*C11)))))))))))
+#endif
+
+long double __cosl(long double x, long double y)
+{
+ long double hz,z,r,w;
+
+ z = x*x;
+ r = POLY(z);
+ hz = 0.5*z;
+ w = 1.0-hz;
+ return w + (((1.0-w)-hz) + (z*r-x*y));
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__expo2.c b/lib/mlibc/options/ansi/musl-generic-math/__expo2.c
new file mode 100644
index 0000000..740ac68
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__expo2.c
@@ -0,0 +1,16 @@
+#include "libm.h"
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
+static const int k = 2043;
+static const double kln2 = 0x1.62066151add8bp+10;
+
+/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
+double __expo2(double x)
+{
+ double scale;
+
+ /* note that k is odd and scale*scale overflows */
+ INSERT_WORDS(scale, (uint32_t)(0x3ff + k/2) << 20, 0);
+ /* exp(x - k ln2) * 2**(k-1) */
+ return exp(x - kln2) * scale * scale;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__expo2f.c b/lib/mlibc/options/ansi/musl-generic-math/__expo2f.c
new file mode 100644
index 0000000..5163e41
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__expo2f.c
@@ -0,0 +1,16 @@
+#include "libm.h"
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+static const int k = 235;
+static const float kln2 = 0x1.45c778p+7f;
+
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
+float __expo2f(float x)
+{
+ float scale;
+
+ /* note that k is odd and scale*scale overflows */
+ SET_FLOAT_WORD(scale, (uint32_t)(0x7f + k/2) << 23);
+ /* exp(x - k ln2) * 2**(k-1) */
+ return expf(x - kln2) * scale * scale;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__fpclassify.c b/lib/mlibc/options/ansi/musl-generic-math/__fpclassify.c
new file mode 100644
index 0000000..f7c0e2d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__fpclassify.c
@@ -0,0 +1,11 @@
+#include <math.h>
+#include <stdint.h>
+
+int __fpclassify(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = u.i>>52 & 0x7ff;
+ if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
+ if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyf.c b/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyf.c
new file mode 100644
index 0000000..fd00eb1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyf.c
@@ -0,0 +1,11 @@
+#include <math.h>
+#include <stdint.h>
+
+int __fpclassifyf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = u.i>>23 & 0xff;
+ if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
+ if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyl.c b/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyl.c
new file mode 100644
index 0000000..481c0b9
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__fpclassifyl.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+int __fpclassifyl(long double x)
+{
+ return __fpclassify(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+int __fpclassifyl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ int msb = u.i.m>>63;
+ if (!e && !msb)
+ return u.i.m ? FP_SUBNORMAL : FP_ZERO;
+ if (!msb)
+ return FP_NAN;
+ if (e == 0x7fff)
+ return u.i.m << 1 ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+int __fpclassifyl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ u.i.se = 0;
+ if (!e)
+ return u.i2.lo | u.i2.hi ? FP_SUBNORMAL : FP_ZERO;
+ if (e == 0x7fff)
+ return u.i2.lo | u.i2.hi ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.c b/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.c
new file mode 100644
index 0000000..48f83aa
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.c
@@ -0,0 +1,63 @@
+#include <float.h>
+#include "__invtrigl.h"
+
+#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+static const long double
+pS0 = 1.66666666666666666631e-01L,
+pS1 = -4.16313987993683104320e-01L,
+pS2 = 3.69068046323246813704e-01L,
+pS3 = -1.36213932016738603108e-01L,
+pS4 = 1.78324189708471965733e-02L,
+pS5 = -2.19216428382605211588e-04L,
+pS6 = -7.10526623669075243183e-06L,
+qS1 = -2.94788392796209867269e+00L,
+qS2 = 3.27309890266528636716e+00L,
+qS3 = -1.68285799854822427013e+00L,
+qS4 = 3.90699412641738801874e-01L,
+qS5 = -3.14365703596053263322e-02L;
+
+const long double pio2_hi = 1.57079632679489661926L;
+const long double pio2_lo = -2.50827880633416601173e-20L;
+
+/* used in asinl() and acosl() */
+/* R(x^2) is a rational approximation of (asin(x)-x)/x^3 with Remez algorithm */
+long double __invtrigl_R(long double z)
+{
+ long double p, q;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*pS6))))));
+ q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*qS5))));
+ return p/q;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+static const long double
+pS0 = 1.66666666666666666666666666666700314e-01L,
+pS1 = -7.32816946414566252574527475428622708e-01L,
+pS2 = 1.34215708714992334609030036562143589e+00L,
+pS3 = -1.32483151677116409805070261790752040e+00L,
+pS4 = 7.61206183613632558824485341162121989e-01L,
+pS5 = -2.56165783329023486777386833928147375e-01L,
+pS6 = 4.80718586374448793411019434585413855e-02L,
+pS7 = -4.42523267167024279410230886239774718e-03L,
+pS8 = 1.44551535183911458253205638280410064e-04L,
+pS9 = -2.10558957916600254061591040482706179e-07L,
+qS1 = -4.84690167848739751544716485245697428e+00L,
+qS2 = 9.96619113536172610135016921140206980e+00L,
+qS3 = -1.13177895428973036660836798461641458e+01L,
+qS4 = 7.74004374389488266169304117714658761e+00L,
+qS5 = -3.25871986053534084709023539900339905e+00L,
+qS6 = 8.27830318881232209752469022352928864e-01L,
+qS7 = -1.18768052702942805423330715206348004e-01L,
+qS8 = 8.32600764660522313269101537926539470e-03L,
+qS9 = -1.99407384882605586705979504567947007e-04L;
+
+const long double pio2_hi = 1.57079632679489661923132169163975140L;
+const long double pio2_lo = 4.33590506506189051239852201302167613e-35L;
+
+long double __invtrigl_R(long double z)
+{
+ long double p, q;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*(pS6+z*(pS7+z*(pS8+z*pS9)))))))));
+ q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*(qS5+z*(qS6+z*(qS7+z*(qS8+z*qS9))))))));
+ return p/q;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.h b/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.h
new file mode 100644
index 0000000..6dedac3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__invtrigl.h
@@ -0,0 +1,11 @@
+/* shared by acosl, asinl and atan2l */
+#define pio2_hi __pio2_hi
+#define pio2_lo __pio2_lo
+
+#ifndef __MLIBC_ABI_ONLY
+
+extern const long double pio2_hi, pio2_lo;
+
+long double __invtrigl_R(long double z);
+
+#endif /* !__MLIBC_ABI_ONLY */
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__polevll.c b/lib/mlibc/options/ansi/musl-generic-math/__polevll.c
new file mode 100644
index 0000000..ce1a840
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__polevll.c
@@ -0,0 +1,93 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/polevll.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Evaluate polynomial
+ *
+ *
+ * SYNOPSIS:
+ *
+ * int N;
+ * long double x, y, coef[N+1], polevl[];
+ *
+ * y = polevll( x, coef, N );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Evaluates polynomial of degree N:
+ *
+ * 2 N
+ * y = C + C x + C x +...+ C x
+ * 0 1 2 N
+ *
+ * Coefficients are stored in reverse order:
+ *
+ * coef[0] = C , ..., coef[N] = C .
+ * N 0
+ *
+ * The function p1evll() assumes that coef[N] = 1.0 and is
+ * omitted from the array. Its calling arguments are
+ * otherwise the same as polevll().
+ *
+ *
+ * SPEED:
+ *
+ * In the interest of speed, there are no checks for out
+ * of bounds arithmetic. This routine is used by most of
+ * the functions in the library. Depending on available
+ * equipment features, the user may wish to rewrite the
+ * program in microcode or assembly language.
+ *
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+#else
+/*
+ * Polynomial evaluator:
+ * P[0] x^n + P[1] x^(n-1) + ... + P[n]
+ */
+long double __polevll(long double x, const long double *P, int n)
+{
+ long double y;
+
+ y = *P++;
+ do {
+ y = y * x + *P++;
+ } while (--n);
+
+ return y;
+}
+
+/*
+ * Polynomial evaluator:
+ * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
+ */
+long double __p1evll(long double x, const long double *P, int n)
+{
+ long double y;
+
+ n -= 1;
+ y = x + *P++;
+ do {
+ y = y * x + *P++;
+ } while (--n);
+
+ return y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2.c b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2.c
new file mode 100644
index 0000000..d403f81
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2.c
@@ -0,0 +1,177 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * Optimized by Bruce D. Evans.
+ */
+/* __rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __rem_pio2_large() for large x
+ */
+
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+
+/*
+ * invpio2: 53 bits of 2/pi
+ * pio2_1: first 33 bit of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 33 bit of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 33 bit of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+static const double
+toint = 1.5/EPS,
+invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
+int __rem_pio2(double x, double *y)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t z,w,t,r,fn;
+ double tx[3],ty[2];
+ uint32_t ix;
+ int sign, n, ex, ey, i;
+
+ sign = u.i>>63;
+ ix = u.i>>32 & 0x7fffffff;
+ if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
+ if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
+ goto medium; /* cancellation -- use medium case */
+ if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
+ if (!sign) {
+ z = x - pio2_1; /* one round good to 85 bits */
+ y[0] = z - pio2_1t;
+ y[1] = (z-y[0]) - pio2_1t;
+ return 1;
+ } else {
+ z = x + pio2_1;
+ y[0] = z + pio2_1t;
+ y[1] = (z-y[0]) + pio2_1t;
+ return -1;
+ }
+ } else {
+ if (!sign) {
+ z = x - 2*pio2_1;
+ y[0] = z - 2*pio2_1t;
+ y[1] = (z-y[0]) - 2*pio2_1t;
+ return 2;
+ } else {
+ z = x + 2*pio2_1;
+ y[0] = z + 2*pio2_1t;
+ y[1] = (z-y[0]) + 2*pio2_1t;
+ return -2;
+ }
+ }
+ }
+ if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
+ if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
+ if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
+ goto medium;
+ if (!sign) {
+ z = x - 3*pio2_1;
+ y[0] = z - 3*pio2_1t;
+ y[1] = (z-y[0]) - 3*pio2_1t;
+ return 3;
+ } else {
+ z = x + 3*pio2_1;
+ y[0] = z + 3*pio2_1t;
+ y[1] = (z-y[0]) + 3*pio2_1t;
+ return -3;
+ }
+ } else {
+ if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
+ goto medium;
+ if (!sign) {
+ z = x - 4*pio2_1;
+ y[0] = z - 4*pio2_1t;
+ y[1] = (z-y[0]) - 4*pio2_1t;
+ return 4;
+ } else {
+ z = x + 4*pio2_1;
+ y[0] = z + 4*pio2_1t;
+ y[1] = (z-y[0]) + 4*pio2_1t;
+ return -4;
+ }
+ }
+ }
+ if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
+medium:
+ /* rint(x/(pi/2)), Assume round-to-nearest. */
+ fn = (double_t)x*invpio2 + toint - toint;
+ n = (int32_t)fn;
+ r = x - fn*pio2_1;
+ w = fn*pio2_1t; /* 1st round, good to 85 bits */
+ y[0] = r - w;
+ u.f = y[0];
+ ey = u.i>>52 & 0x7ff;
+ ex = ix>>20;
+ if (ex - ey > 16) { /* 2nd round, good to 118 bits */
+ t = r;
+ w = fn*pio2_2;
+ r = t - w;
+ w = fn*pio2_2t - ((t-r)-w);
+ y[0] = r - w;
+ u.f = y[0];
+ ey = u.i>>52 & 0x7ff;
+ if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
+ t = r;
+ w = fn*pio2_3;
+ r = t - w;
+ w = fn*pio2_3t - ((t-r)-w);
+ y[0] = r - w;
+ }
+ }
+ y[1] = (r - y[0]) - w;
+ return n;
+ }
+ /*
+ * all other (large) arguments
+ */
+ if (ix >= 0x7ff00000) { /* x is inf or NaN */
+ y[0] = y[1] = x - x;
+ return 0;
+ }
+ /* set z = scalbn(|x|,-ilogb(x)+23) */
+ u.f = x;
+ u.i &= (uint64_t)-1>>12;
+ u.i |= (uint64_t)(0x3ff + 23)<<52;
+ z = u.f;
+ for (i=0; i < 2; i++) {
+ tx[i] = (double)(int32_t)z;
+ z = (z-tx[i])*0x1p24;
+ }
+ tx[i] = z;
+ /* skip zero terms, first term is non-zero */
+ while (tx[i] == 0.0)
+ i--;
+ n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
+ if (sign) {
+ y[0] = -ty[0];
+ y[1] = -ty[1];
+ return -n;
+ }
+ y[0] = ty[0];
+ y[1] = ty[1];
+ return n;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2_large.c b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2_large.c
new file mode 100644
index 0000000..958f28c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2_large.c
@@ -0,0 +1,442 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * __rem_pio2_large(x,y,e0,nx,prec)
+ * double x[],y[]; int e0,nx,prec;
+ *
+ * __rem_pio2_large return the last three digits of N with
+ * y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * x[] The input value (must be positive) is broken into nx
+ * pieces of 24-bit integers in double precision format.
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * match x's up to 24 bits.
+ *
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ * e0 = ilogb(z)-23
+ * z = scalbn(z,-e0)
+ * for i = 0,1,2
+ * x[i] = floor(z)
+ * z = (z-x[i])*2**24
+ *
+ *
+ * y[] ouput result in an array of double precision numbers.
+ * The dimension of y[] is:
+ * 24-bit precision 1
+ * 53-bit precision 2
+ * 64-bit precision 2
+ * 113-bit precision 3
+ * The actual value is the sum of them. Thus for 113-bit
+ * precison, one may have to do something like:
+ *
+ * long double t,w,r_head, r_tail;
+ * t = (long double)y[2] + (long double)y[1];
+ * w = (long double)y[0];
+ * r_head = t+w;
+ * r_tail = w - (r_head - t);
+ *
+ * e0 The exponent of x[0]. Must be <= 16360 or you need to
+ * expand the ipio2 table.
+ *
+ * nx dimension of x[]
+ *
+ * prec an integer indicating the precision:
+ * 0 24 bits (single)
+ * 1 53 bits (double)
+ * 2 64 bits (extended)
+ * 3 113 bits (quad)
+ *
+ * External function:
+ * double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * jk jk+1 is the initial number of terms of ipio2[] needed
+ * in the computation. The minimum and recommended value
+ * for jk is 3,4,4,6 for single, double, extended, and quad.
+ * jk+1 must be 2 larger than you might expect so that our
+ * recomputation test works. (Up to 24 bits in the integer
+ * part (the 24 bits of it that we compute) and 23 bits in
+ * the fraction part may be lost to cancelation before we
+ * recompute.)
+ *
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
+ *
+ * jx nx - 1
+ *
+ * jv index for pointing to the suitable ipio2[] for the
+ * computation. In general, we want
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ * is an integer. Thus
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ * Hence jv = max(0,(e0-3)/24).
+ *
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * q[] double array with integral value, representing the
+ * 24-bits chunk of the product of x and 2/pi.
+ *
+ * q0 the corresponding exponent of q[0]. Note that the
+ * exponent for q[i] would be q0-24*i.
+ *
+ * PIo2[] double precision array, obtained by cutting pi/2
+ * into 24 bits chunks.
+ *
+ * f[] ipio2[] in floating point
+ *
+ * iq[] integer array by breaking up q[] in 24-bits chunk.
+ *
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence
+ * it also indicates the *sign* of the result.
+ *
+ */
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "libm.h"
+
+static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ *
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
+ * floating value is
+ *
+ * ipio2[i] * 2^(-24(i+1)).
+ *
+ * NB: This table must have at least (e0-3)/24 + jk terms.
+ * For quad precision (e0 <= 16360, jk = 6), this is 686.
+ */
+static const int32_t ipio2[] = {
+0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
+0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
+0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
+0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
+0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
+0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
+0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+
+#if LDBL_MAX_EXP > 1024
+0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
+0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
+0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
+0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
+0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
+0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
+0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
+0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
+0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
+0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
+0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
+0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
+0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
+0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
+0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
+0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
+0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
+0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
+0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
+0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
+0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
+0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
+0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
+0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
+0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
+0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
+0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
+0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
+0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
+0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
+0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
+0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
+0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
+0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
+0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
+0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
+0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
+0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
+0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
+0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
+0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
+0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
+0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
+0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
+0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
+0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
+0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
+0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
+0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
+0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
+0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
+0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
+0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
+0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
+0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
+0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
+0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
+0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
+0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
+0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
+0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
+0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
+0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
+0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
+0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
+0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
+0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
+0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
+0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
+0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
+0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
+0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
+0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
+0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
+0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
+0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
+0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
+0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
+0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
+0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
+0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
+0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
+0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
+0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
+0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
+0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
+0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
+0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
+0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
+0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
+0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
+0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
+0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
+0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
+0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
+0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
+0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
+0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
+0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
+0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
+0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
+0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
+0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
+0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
+#endif
+};
+
+static const double PIo2[] = {
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
+{
+ int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+ double z,fw,f[20],fq[20],q[20];
+
+ /* initialize jk*/
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx-1;
+ jv = (e0-3)/24; if(jv<0) jv=0;
+ q0 = e0-24*(jv+1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv-jx; m = jx+jk;
+ for (i=0; i<=m; i++,j++)
+ f[i] = j<0 ? 0.0 : (double)ipio2[j];
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i=0; i<=jk; i++) {
+ for (j=0,fw=0.0; j<=jx; j++)
+ fw += x[j]*f[jx+i-j];
+ q[i] = fw;
+ }
+
+ jz = jk;
+recompute:
+ /* distill q[] into iq[] reversingly */
+ for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
+ fw = (double)(int32_t)(0x1p-24*z);
+ iq[i] = (int32_t)(z - 0x1p24*fw);
+ z = q[j-1]+fw;
+ }
+
+ /* compute n */
+ z = scalbn(z,q0); /* actual value of z */
+ z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
+ n = (int32_t)z;
+ z -= (double)n;
+ ih = 0;
+ if (q0 > 0) { /* need iq[jz-1] to determine n */
+ i = iq[jz-1]>>(24-q0); n += i;
+ iq[jz-1] -= i<<(24-q0);
+ ih = iq[jz-1]>>(23-q0);
+ }
+ else if (q0 == 0) ih = iq[jz-1]>>23;
+ else if (z >= 0.5) ih = 2;
+
+ if (ih > 0) { /* q > 0.5 */
+ n += 1; carry = 0;
+ for (i=0; i<jz; i++) { /* compute 1-q */
+ j = iq[i];
+ if (carry == 0) {
+ if (j != 0) {
+ carry = 1;
+ iq[i] = 0x1000000 - j;
+ }
+ } else
+ iq[i] = 0xffffff - j;
+ }
+ if (q0 > 0) { /* rare case: chance is 1 in 12 */
+ switch(q0) {
+ case 1:
+ iq[jz-1] &= 0x7fffff; break;
+ case 2:
+ iq[jz-1] &= 0x3fffff; break;
+ }
+ }
+ if (ih == 2) {
+ z = 1.0 - z;
+ if (carry != 0)
+ z -= scalbn(1.0,q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if (z == 0.0) {
+ j = 0;
+ for (i=jz-1; i>=jk; i--) j |= iq[i];
+ if (j == 0) { /* need recomputation */
+ for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
+
+ for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx+i] = (double)ipio2[jv+i];
+ for (j=0,fw=0.0; j<=jx; j++)
+ fw += x[j]*f[jx+i-j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if (z == 0.0) {
+ jz -= 1;
+ q0 -= 24;
+ while (iq[jz] == 0) {
+ jz--;
+ q0 -= 24;
+ }
+ } else { /* break z into 24-bit if necessary */
+ z = scalbn(z,-q0);
+ if (z >= 0x1p24) {
+ fw = (double)(int32_t)(0x1p-24*z);
+ iq[jz] = (int32_t)(z - 0x1p24*fw);
+ jz += 1;
+ q0 += 24;
+ iq[jz] = (int32_t)fw;
+ } else
+ iq[jz] = (int32_t)z;
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbn(1.0,q0);
+ for (i=jz; i>=0; i--) {
+ q[i] = fw*(double)iq[i];
+ fw *= 0x1p-24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for(i=jz; i>=0; i--) {
+ for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
+ fw += PIo2[k]*q[i+k];
+ fq[jz-i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch(prec) {
+ case 0:
+ fw = 0.0;
+ for (i=jz; i>=0; i--)
+ fw += fq[i];
+ y[0] = ih==0 ? fw : -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i=jz; i>=0; i--)
+ fw += fq[i];
+ // TODO: drop excess precision here once double_t is used
+ fw = (double)fw;
+ y[0] = ih==0 ? fw : -fw;
+ fw = fq[0]-fw;
+ for (i=1; i<=jz; i++)
+ fw += fq[i];
+ y[1] = ih==0 ? fw : -fw;
+ break;
+ case 3: /* painful */
+ for (i=jz; i>0; i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (i=jz; i>1; i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (fw=0.0,i=jz; i>=2; i--)
+ fw += fq[i];
+ if (ih==0) {
+ y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
+ } else {
+ y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+ }
+ }
+ return n&7;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2f.c b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2f.c
new file mode 100644
index 0000000..4473c1c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2f.c
@@ -0,0 +1,75 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* __rem_pio2f(x,y)
+ *
+ * return the remainder of x rem pi/2 in *y
+ * use double precision for everything except passing x
+ * use __rem_pio2_large() for large x
+ */
+
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+
+/*
+ * invpio2: 53 bits of 2/pi
+ * pio2_1: first 25 bits of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ */
+static const double
+toint = 1.5/EPS,
+invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1 = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
+pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
+
+int __rem_pio2f(float x, double *y)
+{
+ union {float f; uint32_t i;} u = {x};
+ double tx[1],ty[1];
+ double_t fn;
+ uint32_t ix;
+ int n, sign, e0;
+
+ ix = u.i & 0x7fffffff;
+ /* 25+53 bit pi is good enough for medium size */
+ if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
+ /* Use a specialized rint() to get fn. Assume round-to-nearest. */
+ fn = (double_t)x*invpio2 + toint - toint;
+ n = (int32_t)fn;
+ *y = x - fn*pio2_1 - fn*pio2_1t;
+ return n;
+ }
+ if(ix>=0x7f800000) { /* x is inf or NaN */
+ *y = x-x;
+ return 0;
+ }
+ /* scale x into [2^23, 2^24-1] */
+ sign = u.i>>31;
+ e0 = (ix>>23) - (0x7f+23); /* e0 = ilogb(|x|)-23, positive */
+ u.i = ix - (e0<<23);
+ tx[0] = u.f;
+ n = __rem_pio2_large(tx,ty,e0,1,0);
+ if (sign) {
+ *y = -ty[0];
+ return -n;
+ }
+ *y = ty[0];
+ return n;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2l.c b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2l.c
new file mode 100644
index 0000000..77255bd
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__rem_pio2l.c
@@ -0,0 +1,141 @@
+/* origin: FreeBSD /usr/src/lib/msun/ld80/e_rem_pio2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * Optimized by Bruce D. Evans.
+ */
+#include "libm.h"
+#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+/* ld80 and ld128 version of __rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __rem_pio2_large() for large x
+ */
+
+static const long double toint = 1.5/LDBL_EPSILON;
+
+#if LDBL_MANT_DIG == 64
+/* u ~< 0x1p25*pi/2 */
+#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.m>>48) < ((0x3fff + 25)<<16 | 0x921f>>1 | 0x8000))
+#define QUOBITS(x) ((uint32_t)(int32_t)x & 0x7fffffff)
+#define ROUND1 22
+#define ROUND2 61
+#define NX 3
+#define NY 2
+/*
+ * invpio2: 64 bits of 2/pi
+ * pio2_1: first 39 bits of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 39 bits of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 39 bits of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+static const double
+pio2_1 = 1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
+pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
+pio2_3 = 6.36831716351370313614e-25; /* 0x18a2e037074000.0p-133 */
+static const long double
+invpio2 = 6.36619772367581343076e-01L, /* 0xa2f9836e4e44152a.0p-64 */
+pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
+pio2_2t = 6.36831716351095013979e-25L, /* 0xc51701b839a25205.0p-144 */
+pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
+#elif LDBL_MANT_DIG == 113
+/* u ~< 0x1p45*pi/2 */
+#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.top) < ((0x3fff + 45)<<16 | 0x921f))
+#define QUOBITS(x) ((uint32_t)(int64_t)x & 0x7fffffff)
+#define ROUND1 51
+#define ROUND2 119
+#define NX 5
+#define NY 3
+static const long double
+invpio2 = 6.3661977236758134307553505349005747e-01L, /* 0x145f306dc9c882a53f84eafa3ea6a.0p-113 */
+pio2_1 = 1.5707963267948966192292994253909555e+00L, /* 0x1921fb54442d18469800000000000.0p-112 */
+pio2_1t = 2.0222662487959507323996846200947577e-21L, /* 0x13198a2e03707344a4093822299f3.0p-181 */
+pio2_2 = 2.0222662487959507323994779168837751e-21L, /* 0x13198a2e03707344a400000000000.0p-181 */
+pio2_2t = 2.0670321098263988236496903051604844e-43L, /* 0x127044533e63a0105df531d89cd91.0p-254 */
+pio2_3 = 2.0670321098263988236499468110329591e-43L, /* 0x127044533e63a0105e00000000000.0p-254 */
+pio2_3t = -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */
+#endif
+
+int __rem_pio2l(long double x, long double *y)
+{
+ union ldshape u,uz;
+ long double z,w,t,r,fn;
+ double tx[NX],ty[NY];
+ int ex,ey,n,i;
+
+ u.f = x;
+ ex = u.i.se & 0x7fff;
+ if (SMALL(u)) {
+ /* rint(x/(pi/2)), Assume round-to-nearest. */
+ fn = x*invpio2 + toint - toint;
+ n = QUOBITS(fn);
+ r = x-fn*pio2_1;
+ w = fn*pio2_1t; /* 1st round good to 102/180 bits (ld80/ld128) */
+ y[0] = r-w;
+ u.f = y[0];
+ ey = u.i.se & 0x7fff;
+ if (ex - ey > ROUND1) { /* 2nd iteration needed, good to 141/248 (ld80/ld128) */
+ t = r;
+ w = fn*pio2_2;
+ r = t-w;
+ w = fn*pio2_2t-((t-r)-w);
+ y[0] = r-w;
+ u.f = y[0];
+ ey = u.i.se & 0x7fff;
+ if (ex - ey > ROUND2) { /* 3rd iteration, good to 180/316 bits */
+ t = r; /* will cover all possible cases (not verified for ld128) */
+ w = fn*pio2_3;
+ r = t-w;
+ w = fn*pio2_3t-((t-r)-w);
+ y[0] = r-w;
+ }
+ }
+ y[1] = (r - y[0]) - w;
+ return n;
+ }
+ /*
+ * all other (large) arguments
+ */
+ if (ex == 0x7fff) { /* x is inf or NaN */
+ y[0] = y[1] = x - x;
+ return 0;
+ }
+ /* set z = scalbn(|x|,-ilogb(x)+23) */
+ uz.f = x;
+ uz.i.se = 0x3fff + 23;
+ z = uz.f;
+ for (i=0; i < NX - 1; i++) {
+ tx[i] = (double)(int32_t)z;
+ z = (z-tx[i])*0x1p24;
+ }
+ tx[i] = z;
+ while (tx[i] == 0)
+ i--;
+ n = __rem_pio2_large(tx, ty, ex-0x3fff-23, i+1, NY);
+ w = ty[1];
+ if (NY == 3)
+ w += ty[2];
+ r = ty[0] + w;
+ /* TODO: for ld128 this does not follow the recommendation of the
+ comments of __rem_pio2_large which seem wrong if |ty[0]| > |ty[1]+ty[2]| */
+ w -= r - ty[0];
+ if (u.i.se >> 15) {
+ y[0] = -r;
+ y[1] = -w;
+ return -n;
+ }
+ y[0] = r;
+ y[1] = w;
+ return n;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__signbit.c b/lib/mlibc/options/ansi/musl-generic-math/__signbit.c
new file mode 100644
index 0000000..e700b6b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__signbit.c
@@ -0,0 +1,13 @@
+#include "libm.h"
+
+// FIXME: macro in math.h
+int __signbit(double x)
+{
+ union {
+ double d;
+ uint64_t i;
+ } y = { x };
+ return y.i>>63;
+}
+
+
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__signbitf.c b/lib/mlibc/options/ansi/musl-generic-math/__signbitf.c
new file mode 100644
index 0000000..40ad3cf
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__signbitf.c
@@ -0,0 +1,11 @@
+#include "libm.h"
+
+// FIXME: macro in math.h
+int __signbitf(float x)
+{
+ union {
+ float f;
+ uint32_t i;
+ } y = { x };
+ return y.i>>31;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__signbitl.c b/lib/mlibc/options/ansi/musl-generic-math/__signbitl.c
new file mode 100644
index 0000000..63b3dc5
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__signbitl.c
@@ -0,0 +1,14 @@
+#include "libm.h"
+
+#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+int __signbitl(long double x)
+{
+ union ldshape u = {x};
+ return u.i.se >> 15;
+}
+#elif LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+int __signbitl(long double x)
+{
+ return __signbit(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__sin.c b/lib/mlibc/options/ansi/musl-generic-math/__sin.c
new file mode 100644
index 0000000..4030949
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__sin.c
@@ -0,0 +1,64 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* __sin( x, y, iy)
+ * kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 2. Callers must return sin(-0) = -0 without calling here since our
+ * odd polynomial is not evaluated in a way that preserves -0.
+ * Callers may do the optimization sin(x) ~ x for tiny x.
+ * 3. sin(x) is approximated by a polynomial of degree 13 on
+ * [0,pi/4]
+ * 3 13
+ * sin(x) ~ x + S1*x + ... + S6*x
+ * where
+ *
+ * |sin(x) 2 4 6 8 10 12 | -58
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+ * | x |
+ *
+ * 4. sin(x+y) = sin(x) + sin'(x')*y
+ * ~ sin(x) + (1-x*x/2)*y
+ * For better accuracy, let
+ * 3 2 2 2 2
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ * then 3 2
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+#include "libm.h"
+
+static const double
+S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+double __sin(double x, double y, int iy)
+{
+ double_t z,r,v,w;
+
+ z = x*x;
+ w = z*z;
+ r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
+ v = z*x;
+ if (iy == 0)
+ return x + v*(S1 + z*r);
+ else
+ return x - ((z*(0.5*y - v*r) - y) - v*S1);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__sindf.c b/lib/mlibc/options/ansi/musl-generic-math/__sindf.c
new file mode 100644
index 0000000..8fec2a3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__sindf.c
@@ -0,0 +1,36 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
+static const double
+S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
+S2 = 0x111110896efbb2.0p-59, /* 0.0083333293858894631756 */
+S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
+S4 = 0x16cd878c3b46a7.0p-71; /* 0.0000027183114939898219064 */
+
+float __sindf(double x)
+{
+ double_t r, s, w, z;
+
+ /* Try to optimize for parallel evaluation as in __tandf.c. */
+ z = x*x;
+ w = z*z;
+ r = S3 + z*S4;
+ s = z*x;
+ return (x + s*(S1 + z*S2)) + s*w*r;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__sinl.c b/lib/mlibc/options/ansi/musl-generic-math/__sinl.c
new file mode 100644
index 0000000..2525bbe
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__sinl.c
@@ -0,0 +1,78 @@
+/* origin: FreeBSD /usr/src/lib/msun/ld80/k_sinl.c */
+/* origin: FreeBSD /usr/src/lib/msun/ld128/k_sinl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#if LDBL_MANT_DIG == 64
+/*
+ * ld80 version of __sin.c. See __sin.c for most comments.
+ */
+/*
+ * Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
+ * |sin(x)/x - s(x)| < 2**-72.1
+ *
+ * See __cosl.c for more details about the polynomial.
+ */
+static const long double
+S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
+static const double
+S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
+S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
+S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
+S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
+S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
+S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
+S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
+#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8))))))
+#elif LDBL_MANT_DIG == 113
+/*
+ * ld128 version of __sin.c. See __sin.c for most comments.
+ */
+/*
+ * Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
+ * |sin(x)/x - s(x)| < 2**-122.1
+ *
+ * See __cosl.c for more details about the polynomial.
+ */
+static const long double
+S1 = -0.16666666666666666666666666666666666606732416116558L,
+S2 = 0.0083333333333333333333333333333331135404851288270047L,
+S3 = -0.00019841269841269841269841269839935785325638310428717L,
+S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
+S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
+S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
+S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
+S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
+static const double
+S9 = -0.82206352458348947812512122163446202498005154296863e-17,
+S10 = 0.19572940011906109418080609928334380560135358385256e-19,
+S11 = -0.38680813379701966970673724299207480965452616911420e-22,
+S12 = 0.64038150078671872796678569586315881020659912139412e-25;
+#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+ \
+ z*(S9+z*(S10+z*(S11+z*S12))))))))))
+#endif
+
+long double __sinl(long double x, long double y, int iy)
+{
+ long double z,r,v;
+
+ z = x*x;
+ v = z*x;
+ r = POLY(z);
+ if (iy == 0)
+ return x+v*(S1+z*r);
+ return x-((z*(0.5*y-v*r)-y)-v*S1);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__tan.c b/lib/mlibc/options/ansi/musl-generic-math/__tan.c
new file mode 100644
index 0000000..8019844
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__tan.c
@@ -0,0 +1,110 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* __tan( x, y, k )
+ * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
+ *
+ * Algorithm
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 2. Callers must return tan(-0) = -0 without calling here since our
+ * odd polynomial is not evaluated in a way that preserves -0.
+ * Callers may do the optimization tan(x) ~ x for tiny x.
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on
+ * [0,0.67434]
+ * 3 27
+ * tan(x) ~ x + T1*x + ... + T13*x
+ * where
+ *
+ * |tan(x) 2 4 26 | -59.2
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+ * | x |
+ *
+ * Note: tan(x+y) = tan(x) + tan'(x)*y
+ * ~ tan(x) + (1+x*x)*y
+ * Therefore, for better accuracy in computing tan(x+y), let
+ * 3 2 2 2 2
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ * then
+ * 3 2
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include "libm.h"
+
+static const double T[] = {
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+},
+pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
+pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
+
+double __tan(double x, double y, int odd)
+{
+ double_t z, r, v, w, s, a;
+ double w0, a0;
+ uint32_t hx;
+ int big, sign;
+
+ GET_HIGH_WORD(hx,x);
+ big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
+ if (big) {
+ sign = hx>>31;
+ if (sign) {
+ x = -x;
+ y = -y;
+ }
+ x = (pio4 - x) + (pio4lo - y);
+ y = 0.0;
+ }
+ z = x * x;
+ w = z * z;
+ /*
+ * Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
+ v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
+ s = z * x;
+ r = y + z*(s*(r + v) + y) + s*T[0];
+ w = x + r;
+ if (big) {
+ s = 1 - 2*odd;
+ v = s - 2.0 * (x + (r - w*w/(w + s)));
+ return sign ? -v : v;
+ }
+ if (!odd)
+ return w;
+ /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
+ w0 = w;
+ SET_LOW_WORD(w0, 0);
+ v = r - (w0 - x); /* w0+v = r+x */
+ a0 = a = -1.0 / w;
+ SET_LOW_WORD(a0, 0);
+ return a0 + a*(1.0 + a0*w0 + a0*v);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__tandf.c b/lib/mlibc/options/ansi/musl-generic-math/__tandf.c
new file mode 100644
index 0000000..25047ee
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__tandf.c
@@ -0,0 +1,54 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
+static const double T[] = {
+ 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
+ 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
+ 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
+ 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
+ 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
+ 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
+};
+
+float __tandf(double x, int odd)
+{
+ double_t z,r,w,s,t,u;
+
+ z = x*x;
+ /*
+ * Split up the polynomial into small independent terms to give
+ * opportunities for parallel evaluation. The chosen splitting is
+ * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
+ * relative to Horner's method on sequential machines.
+ *
+ * We add the small terms from lowest degree up for efficiency on
+ * non-sequential machines (the lowest degree terms tend to be ready
+ * earlier). Apart from this, we don't care about order of
+ * operations, and don't need to to care since we have precision to
+ * spare. However, the chosen splitting is good for accuracy too,
+ * and would give results as accurate as Horner's method if the
+ * small terms were added from highest degree down.
+ */
+ r = T[4] + z*T[5];
+ t = T[2] + z*T[3];
+ w = z*z;
+ s = z*x;
+ u = T[0] + z*T[1];
+ r = (x + s*u) + (s*w)*(t + w*r);
+ return odd ? -1.0/r : r;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__tanl.c b/lib/mlibc/options/ansi/musl-generic-math/__tanl.c
new file mode 100644
index 0000000..54abc3d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__tanl.c
@@ -0,0 +1,143 @@
+/* origin: FreeBSD /usr/src/lib/msun/ld80/k_tanl.c */
+/* origin: FreeBSD /usr/src/lib/msun/ld128/k_tanl.c */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#if LDBL_MANT_DIG == 64
+/*
+ * ld80 version of __tan.c. See __tan.c for most comments.
+ */
+/*
+ * Domain [-0.67434, 0.67434], range ~[-2.25e-22, 1.921e-22]
+ * |tan(x)/x - t(x)| < 2**-71.9
+ *
+ * See __cosl.c for more details about the polynomial.
+ */
+static const long double
+T3 = 0.333333333333333333180L, /* 0xaaaaaaaaaaaaaaa5.0p-65 */
+T5 = 0.133333333333333372290L, /* 0x88888888888893c3.0p-66 */
+T7 = 0.0539682539682504975744L, /* 0xdd0dd0dd0dc13ba2.0p-68 */
+pio4 = 0.785398163397448309628L, /* 0xc90fdaa22168c235.0p-64 */
+pio4lo = -1.25413940316708300586e-20L; /* -0xece675d1fc8f8cbb.0p-130 */
+static const double
+T9 = 0.021869488536312216, /* 0x1664f4882cc1c2.0p-58 */
+T11 = 0.0088632355256619590, /* 0x1226e355c17612.0p-59 */
+T13 = 0.0035921281113786528, /* 0x1d6d3d185d7ff8.0p-61 */
+T15 = 0.0014558334756312418, /* 0x17da354aa3f96b.0p-62 */
+T17 = 0.00059003538700862256, /* 0x13559358685b83.0p-63 */
+T19 = 0.00023907843576635544, /* 0x1f56242026b5be.0p-65 */
+T21 = 0.000097154625656538905, /* 0x1977efc26806f4.0p-66 */
+T23 = 0.000038440165747303162, /* 0x14275a09b3ceac.0p-67 */
+T25 = 0.000018082171885432524, /* 0x12f5e563e5487e.0p-68 */
+T27 = 0.0000024196006108814377, /* 0x144c0d80cc6896.0p-71 */
+T29 = 0.0000078293456938132840, /* 0x106b59141a6cb3.0p-69 */
+T31 = -0.0000032609076735050182, /* -0x1b5abef3ba4b59.0p-71 */
+T33 = 0.0000023261313142559411; /* 0x13835436c0c87f.0p-71 */
+#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
+ w * (T25 + w * (T29 + w * T33)))))))
+#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
+ w * (T27 + w * T31))))))
+#elif LDBL_MANT_DIG == 113
+/*
+ * ld128 version of __tan.c. See __tan.c for most comments.
+ */
+/*
+ * Domain [-0.67434, 0.67434], range ~[-3.37e-36, 1.982e-37]
+ * |tan(x)/x - t(x)| < 2**-117.8 (XXX should be ~1e-37)
+ *
+ * See __cosl.c for more details about the polynomial.
+ */
+static const long double
+T3 = 0x1.5555555555555555555555555553p-2L,
+T5 = 0x1.1111111111111111111111111eb5p-3L,
+T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
+T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
+T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
+T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
+T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
+T17 = 0x1.355824803674477dfcf726649efep-11L,
+T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
+T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
+T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
+T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
+T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
+T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
+T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
+T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
+T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
+T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
+pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
+pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
+static const double
+T39 = 0.000000028443389121318352, /* 0x1e8a7592977938.0p-78 */
+T41 = 0.000000011981013102001973, /* 0x19baa1b1223219.0p-79 */
+T43 = 0.0000000038303578044958070, /* 0x107385dfb24529.0p-80 */
+T45 = 0.0000000034664378216909893, /* 0x1dc6c702a05262.0p-81 */
+T47 = -0.0000000015090641701997785, /* -0x19ecef3569ebb6.0p-82 */
+T49 = 0.0000000029449552300483952, /* 0x194c0668da786a.0p-81 */
+T51 = -0.0000000022006995706097711, /* -0x12e763b8845268.0p-81 */
+T53 = 0.0000000015468200913196612, /* 0x1a92fc98c29554.0p-82 */
+T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
+T57 = 1.4912469681508012e-10; /* 0x147edbdba6f43a.0p-85 */
+#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
+ w * (T25 + w * (T29 + w * (T33 + w * (T37 + w * (T41 + \
+ w * (T45 + w * (T49 + w * (T53 + w * T57)))))))))))))
+#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
+ w * (T27 + w * (T31 + w * (T35 + w * (T39 + w * (T43 + \
+ w * (T47 + w * (T51 + w * T55))))))))))))
+#endif
+
+long double __tanl(long double x, long double y, int odd) {
+ long double z, r, v, w, s, a, t;
+ int big, sign;
+
+ big = fabsl(x) >= 0.67434;
+ if (big) {
+ sign = 0;
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ y = -y;
+ }
+ x = (pio4 - x) + (pio4lo - y);
+ y = 0.0;
+ }
+ z = x * x;
+ w = z * z;
+ r = RPOLY(w);
+ v = z * VPOLY(w);
+ s = z * x;
+ r = y + z * (s * (r + v) + y) + T3 * s;
+ w = x + r;
+ if (big) {
+ s = 1 - 2*odd;
+ v = s - 2.0 * (x + (r - w * w / (w + s)));
+ return sign ? -v : v;
+ }
+ if (!odd)
+ return w;
+ /*
+ * if allow error up to 2 ulp, simply return
+ * -1.0 / (x+r) here
+ */
+ /* compute -1.0 / (x+r) accurately */
+ z = w;
+ z = z + 0x1p32 - 0x1p32;
+ v = r - (z - x); /* z+v = r+x */
+ t = a = -1.0 / w; /* a = -1.0/w */
+ t = t + 0x1p32 - 0x1p32;
+ s = 1.0 + t * z;
+ return t + a * (s + t * v);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acos.c b/lib/mlibc/options/ansi/musl-generic-math/acos.c
new file mode 100644
index 0000000..ea9c87b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acos.c
@@ -0,0 +1,101 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* acos(x)
+ * Method :
+ * acos(x) = pi/2 - asin(x)
+ * acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
+ * For x>0.5
+ * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ * = 2asin(sqrt((1-x)/2))
+ * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
+ * = 2f + (2c + 2s*z*R(z))
+ * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ * for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: sqrt
+ */
+
+#include "libm.h"
+
+static const double
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
+qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+static double R(double z)
+{
+ double_t p, q;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ return p/q;
+}
+
+double acos(double x)
+{
+ double z,w,s,c,df;
+ uint32_t hx,ix;
+
+ GET_HIGH_WORD(hx, x);
+ ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if (ix >= 0x3ff00000) {
+ uint32_t lx;
+
+ GET_LOW_WORD(lx,x);
+ if ((ix-0x3ff00000 | lx) == 0) {
+ /* acos(1)=0, acos(-1)=pi */
+ if (hx >> 31)
+ return 2*pio2_hi + 0x1p-120f;
+ return 0;
+ }
+ return 0/(x-x);
+ }
+ /* |x| < 0.5 */
+ if (ix < 0x3fe00000) {
+ if (ix <= 0x3c600000) /* |x| < 2**-57 */
+ return pio2_hi + 0x1p-120f;
+ return pio2_hi - (x - (pio2_lo-x*R(x*x)));
+ }
+ /* x < -0.5 */
+ if (hx >> 31) {
+ z = (1.0+x)*0.5;
+ s = sqrt(z);
+ w = R(z)*s-pio2_lo;
+ return 2*(pio2_hi - (s+w));
+ }
+ /* x > 0.5 */
+ z = (1.0-x)*0.5;
+ s = sqrt(z);
+ df = s;
+ SET_LOW_WORD(df,0);
+ c = (z-df*df)/(s+df);
+ w = R(z)*s+c;
+ return 2*(df+w);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acosf.c b/lib/mlibc/options/ansi/musl-generic-math/acosf.c
new file mode 100644
index 0000000..8ee1a71
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acosf.c
@@ -0,0 +1,71 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
+pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
+pS0 = 1.6666586697e-01,
+pS1 = -4.2743422091e-02,
+pS2 = -8.6563630030e-03,
+qS1 = -7.0662963390e-01;
+
+static float R(float z)
+{
+ float_t p, q;
+ p = z*(pS0+z*(pS1+z*pS2));
+ q = 1.0f+z*qS1;
+ return p/q;
+}
+
+float acosf(float x)
+{
+ float z,w,s,c,df;
+ uint32_t hx,ix;
+
+ GET_FLOAT_WORD(hx, x);
+ ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if (ix >= 0x3f800000) {
+ if (ix == 0x3f800000) {
+ if (hx >> 31)
+ return 2*pio2_hi + 0x1p-120f;
+ return 0;
+ }
+ return 0/(x-x);
+ }
+ /* |x| < 0.5 */
+ if (ix < 0x3f000000) {
+ if (ix <= 0x32800000) /* |x| < 2**-26 */
+ return pio2_hi + 0x1p-120f;
+ return pio2_hi - (x - (pio2_lo-x*R(x*x)));
+ }
+ /* x < -0.5 */
+ if (hx >> 31) {
+ z = (1+x)*0.5f;
+ s = sqrtf(z);
+ w = R(z)*s-pio2_lo;
+ return 2*(pio2_hi - (s+w));
+ }
+ /* x > 0.5 */
+ z = (1-x)*0.5f;
+ s = sqrtf(z);
+ GET_FLOAT_WORD(hx,s);
+ SET_FLOAT_WORD(df,hx&0xfffff000);
+ c = (z-df*df)/(s+df);
+ w = R(z)*s+c;
+ return 2*(df+w);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acosh.c b/lib/mlibc/options/ansi/musl-generic-math/acosh.c
new file mode 100644
index 0000000..badbf90
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acosh.c
@@ -0,0 +1,24 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==2
+#undef sqrt
+#define sqrt sqrtl
+#endif
+
+/* acosh(x) = log(x + sqrt(x*x-1)) */
+double acosh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ unsigned e = u.i >> 52 & 0x7ff;
+
+ /* x < 1 domain error is handled in the called functions */
+
+ if (e < 0x3ff + 1)
+ /* |x| < 2, up to 2ulp error in [1,1.125] */
+ return log1p(x-1 + sqrt((x-1)*(x-1)+2*(x-1)));
+ if (e < 0x3ff + 26)
+ /* |x| < 0x1p26 */
+ return log(2*x - 1/(x+sqrt(x*x-1)));
+ /* |x| >= 0x1p26 or nan */
+ return log(x) + 0.693147180559945309417232121458176568;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acoshf.c b/lib/mlibc/options/ansi/musl-generic-math/acoshf.c
new file mode 100644
index 0000000..8a4ec4d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acoshf.c
@@ -0,0 +1,26 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==2
+#undef sqrtf
+#define sqrtf sqrtl
+#elif FLT_EVAL_METHOD==1
+#undef sqrtf
+#define sqrtf sqrt
+#endif
+
+/* acosh(x) = log(x + sqrt(x*x-1)) */
+float acoshf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ uint32_t a = u.i & 0x7fffffff;
+
+ if (a < 0x3f800000+(1<<23))
+ /* |x| < 2, invalid if x < 1 or nan */
+ /* up to 2ulp error in [1,1.125] */
+ return log1pf(x-1 + sqrtf((x-1)*(x-1)+2*(x-1)));
+ if (a < 0x3f800000+(12<<23))
+ /* |x| < 0x1p12 */
+ return logf(2*x - 1/(x+sqrtf(x*x-1)));
+ /* x >= 0x1p12 */
+ return logf(x) + 0.693147180559945309417232121458176568f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acoshl.c b/lib/mlibc/options/ansi/musl-generic-math/acoshl.c
new file mode 100644
index 0000000..8d4b43f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acoshl.c
@@ -0,0 +1,29 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double acoshl(long double x)
+{
+ return acosh(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* acosh(x) = log(x + sqrt(x*x-1)) */
+long double acoshl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+
+ if (e < 0x3fff + 1)
+ /* |x| < 2, invalid if x < 1 or nan */
+ return log1pl(x-1 + sqrtl((x-1)*(x-1)+2*(x-1)));
+ if (e < 0x3fff + 32)
+ /* |x| < 0x1p32 */
+ return logl(2*x - 1/(x+sqrtl(x*x-1)));
+ return logl(x) + 0.693147180559945309417232121458176568L;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double acoshl(long double x)
+{
+ return acosh(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acosl.c b/lib/mlibc/options/ansi/musl-generic-math/acosl.c
new file mode 100644
index 0000000..c03bdf0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/acosl.c
@@ -0,0 +1,67 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in acos.c.
+ * Converted to long double by David Schultz <das@FreeBSD.ORG>.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double acosl(long double x)
+{
+ return acos(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#include "__invtrigl.h"
+#if LDBL_MANT_DIG == 64
+#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
+#elif LDBL_MANT_DIG == 113
+#define CLEARBOTTOM(u) (u.i.lo = 0)
+#endif
+
+long double acosl(long double x)
+{
+ union ldshape u = {x};
+ long double z, s, c, f;
+ uint16_t e = u.i.se & 0x7fff;
+
+ /* |x| >= 1 or nan */
+ if (e >= 0x3fff) {
+ if (x == 1)
+ return 0;
+ if (x == -1)
+ return 2*pio2_hi + 0x1p-120f;
+ return 0/(x-x);
+ }
+ /* |x| < 0.5 */
+ if (e < 0x3fff - 1) {
+ if (e < 0x3fff - LDBL_MANT_DIG - 1)
+ return pio2_hi + 0x1p-120f;
+ return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
+ }
+ /* x < -0.5 */
+ if (u.i.se >> 15) {
+ z = (1 + x)*0.5;
+ s = sqrtl(z);
+ return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
+ }
+ /* x > 0.5 */
+ z = (1 - x)*0.5;
+ s = sqrtl(z);
+ u.f = s;
+ CLEARBOTTOM(u);
+ f = u.f;
+ c = (z - f*f)/(s + f);
+ return 2*(__invtrigl_R(z)*s + c + f);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asin.c b/lib/mlibc/options/ansi/musl-generic-math/asin.c
new file mode 100644
index 0000000..c926b18
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asin.c
@@ -0,0 +1,107 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* asin(x)
+ * Method :
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ * we approximate asin(x) on [0,0.5] by
+ * asin(x) = x + x*x^2*R(x^2)
+ * where
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ * and its remez error is bounded by
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ * For x in [0.5,1]
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ * then for x>0.98
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then
+ * f = hi part of s;
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
+ * and
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+#include "libm.h"
+
+static const double
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+/* coefficients for R(x^2) */
+pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
+qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+static double R(double z)
+{
+ double_t p, q;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ return p/q;
+}
+
+double asin(double x)
+{
+ double z,r,s;
+ uint32_t hx,ix;
+
+ GET_HIGH_WORD(hx, x);
+ ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if (ix >= 0x3ff00000) {
+ uint32_t lx;
+ GET_LOW_WORD(lx, x);
+ if ((ix-0x3ff00000 | lx) == 0)
+ /* asin(1) = +-pi/2 with inexact */
+ return x*pio2_hi + 0x1p-120f;
+ return 0/(x-x);
+ }
+ /* |x| < 0.5 */
+ if (ix < 0x3fe00000) {
+ /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
+ if (ix < 0x3e500000 && ix >= 0x00100000)
+ return x;
+ return x + x*R(x*x);
+ }
+ /* 1 > |x| >= 0.5 */
+ z = (1 - fabs(x))*0.5;
+ s = sqrt(z);
+ r = R(z);
+ if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
+ x = pio2_hi-(2*(s+s*r)-pio2_lo);
+ } else {
+ double f,c;
+ /* f+c = sqrt(z) */
+ f = s;
+ SET_LOW_WORD(f,0);
+ c = (z-f*f)/(s+f);
+ x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
+ }
+ if (hx >> 31)
+ return -x;
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asinf.c b/lib/mlibc/options/ansi/musl-generic-math/asinf.c
new file mode 100644
index 0000000..bcd304a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asinf.c
@@ -0,0 +1,61 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+#include "libm.h"
+
+static const double
+pio2 = 1.570796326794896558e+00;
+
+static const float
+/* coefficients for R(x^2) */
+pS0 = 1.6666586697e-01,
+pS1 = -4.2743422091e-02,
+pS2 = -8.6563630030e-03,
+qS1 = -7.0662963390e-01;
+
+static float R(float z)
+{
+ float_t p, q;
+ p = z*(pS0+z*(pS1+z*pS2));
+ q = 1.0f+z*qS1;
+ return p/q;
+}
+
+float asinf(float x)
+{
+ double s;
+ float z;
+ uint32_t hx,ix;
+
+ GET_FLOAT_WORD(hx, x);
+ ix = hx & 0x7fffffff;
+ if (ix >= 0x3f800000) { /* |x| >= 1 */
+ if (ix == 0x3f800000) /* |x| == 1 */
+ return x*pio2 + 0x1p-120f; /* asin(+-1) = +-pi/2 with inexact */
+ return 0/(x-x); /* asin(|x|>1) is NaN */
+ }
+ if (ix < 0x3f000000) { /* |x| < 0.5 */
+ /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
+ if (ix < 0x39800000 && ix >= 0x00800000)
+ return x;
+ return x + x*R(x*x);
+ }
+ /* 1 > |x| >= 0.5 */
+ z = (1 - fabsf(x))*0.5f;
+ s = sqrt(z);
+ x = pio2 - 2*(s+s*R(z));
+ if (hx >> 31)
+ return -x;
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asinh.c b/lib/mlibc/options/ansi/musl-generic-math/asinh.c
new file mode 100644
index 0000000..0829f22
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asinh.c
@@ -0,0 +1,28 @@
+#include "libm.h"
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+double asinh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ unsigned e = u.i >> 52 & 0x7ff;
+ unsigned s = u.i >> 63;
+
+ /* |x| */
+ u.i &= (uint64_t)-1/2;
+ x = u.f;
+
+ if (e >= 0x3ff + 26) {
+ /* |x| >= 0x1p26 or inf or nan */
+ x = log(x) + 0.693147180559945309417232121458176568;
+ } else if (e >= 0x3ff + 1) {
+ /* |x| >= 2 */
+ x = log(2*x + 1/(sqrt(x*x+1)+x));
+ } else if (e >= 0x3ff - 26) {
+ /* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
+ x = log1p(x + x*x/(sqrt(x*x+1)+1));
+ } else {
+ /* |x| < 0x1p-26, raise inexact if x != 0 */
+ FORCE_EVAL(x + 0x1p120f);
+ }
+ return s ? -x : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asinhf.c b/lib/mlibc/options/ansi/musl-generic-math/asinhf.c
new file mode 100644
index 0000000..fc9f091
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asinhf.c
@@ -0,0 +1,28 @@
+#include "libm.h"
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+float asinhf(float x)
+{
+ union {float f; uint32_t i;} u = {.f = x};
+ uint32_t i = u.i & 0x7fffffff;
+ unsigned s = u.i >> 31;
+
+ /* |x| */
+ u.i = i;
+ x = u.f;
+
+ if (i >= 0x3f800000 + (12<<23)) {
+ /* |x| >= 0x1p12 or inf or nan */
+ x = logf(x) + 0.693147180559945309417232121458176568f;
+ } else if (i >= 0x3f800000 + (1<<23)) {
+ /* |x| >= 2 */
+ x = logf(2*x + 1/(sqrtf(x*x+1)+x));
+ } else if (i >= 0x3f800000 - (12<<23)) {
+ /* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
+ x = log1pf(x + x*x/(sqrtf(x*x+1)+1));
+ } else {
+ /* |x| < 0x1p-12, raise inexact if x!=0 */
+ FORCE_EVAL(x + 0x1p120f);
+ }
+ return s ? -x : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asinhl.c b/lib/mlibc/options/ansi/musl-generic-math/asinhl.c
new file mode 100644
index 0000000..8635f52
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asinhl.c
@@ -0,0 +1,41 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double asinhl(long double x)
+{
+ return asinh(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+long double asinhl(long double x)
+{
+ union ldshape u = {x};
+ unsigned e = u.i.se & 0x7fff;
+ unsigned s = u.i.se >> 15;
+
+ /* |x| */
+ u.i.se = e;
+ x = u.f;
+
+ if (e >= 0x3fff + 32) {
+ /* |x| >= 0x1p32 or inf or nan */
+ x = logl(x) + 0.693147180559945309417232121458176568L;
+ } else if (e >= 0x3fff + 1) {
+ /* |x| >= 2 */
+ x = logl(2*x + 1/(sqrtl(x*x+1)+x));
+ } else if (e >= 0x3fff - 32) {
+ /* |x| >= 0x1p-32 */
+ x = log1pl(x + x*x/(sqrtl(x*x+1)+1));
+ } else {
+ /* |x| < 0x1p-32, raise inexact if x!=0 */
+ FORCE_EVAL(x + 0x1p120f);
+ }
+ return s ? -x : x;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double asinhl(long double x)
+{
+ return asinh(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/asinl.c b/lib/mlibc/options/ansi/musl-generic-math/asinl.c
new file mode 100644
index 0000000..347c535
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/asinl.c
@@ -0,0 +1,71 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asinl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in asin.c.
+ * Converted to long double by David Schultz <das@FreeBSD.ORG>.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double asinl(long double x)
+{
+ return asin(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#include "__invtrigl.h"
+#if LDBL_MANT_DIG == 64
+#define CLOSETO1(u) (u.i.m>>56 >= 0xf7)
+#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
+#elif LDBL_MANT_DIG == 113
+#define CLOSETO1(u) (u.i.top >= 0xee00)
+#define CLEARBOTTOM(u) (u.i.lo = 0)
+#endif
+
+long double asinl(long double x)
+{
+ union ldshape u = {x};
+ long double z, r, s;
+ uint16_t e = u.i.se & 0x7fff;
+ int sign = u.i.se >> 15;
+
+ if (e >= 0x3fff) { /* |x| >= 1 or nan */
+ /* asin(+-1)=+-pi/2 with inexact */
+ if (x == 1 || x == -1)
+ return x*pio2_hi + 0x1p-120f;
+ return 0/(x-x);
+ }
+ if (e < 0x3fff - 1) { /* |x| < 0.5 */
+ if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {
+ /* return x with inexact if x!=0 */
+ FORCE_EVAL(x + 0x1p120f);
+ return x;
+ }
+ return x + x*__invtrigl_R(x*x);
+ }
+ /* 1 > |x| >= 0.5 */
+ z = (1.0 - fabsl(x))*0.5;
+ s = sqrtl(z);
+ r = __invtrigl_R(z);
+ if (CLOSETO1(u)) {
+ x = pio2_hi - (2*(s+s*r)-pio2_lo);
+ } else {
+ long double f, c;
+ u.f = s;
+ CLEARBOTTOM(u);
+ f = u.f;
+ c = (z - f*f)/(s + f);
+ x = 0.5*pio2_hi-(2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
+ }
+ return sign ? -x : x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atan.c b/lib/mlibc/options/ansi/musl-generic-math/atan.c
new file mode 100644
index 0000000..63b0ab2
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atan.c
@@ -0,0 +1,116 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* atan(x)
+ * Method
+ * 1. Reduce x to positive by atan(x) = -atan(-x).
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of t is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+
+#include "libm.h"
+
+static const double atanhi[] = {
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+};
+
+static const double atanlo[] = {
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+};
+
+static const double aT[] = {
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+};
+
+double atan(double x)
+{
+ double_t w,s1,s2,z;
+ uint32_t ix,sign;
+ int id;
+
+ GET_HIGH_WORD(ix, x);
+ sign = ix >> 31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x44100000) { /* if |x| >= 2^66 */
+ if (isnan(x))
+ return x;
+ z = atanhi[3] + 0x1p-120f;
+ return sign ? -z : z;
+ }
+ if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
+ if (ix < 0x3e400000) { /* |x| < 2^-27 */
+ if (ix < 0x00100000)
+ /* raise underflow for subnormal x */
+ FORCE_EVAL((float)x);
+ return x;
+ }
+ id = -1;
+ } else {
+ x = fabs(x);
+ if (ix < 0x3ff30000) { /* |x| < 1.1875 */
+ if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
+ id = 0;
+ x = (2.0*x-1.0)/(2.0+x);
+ } else { /* 11/16 <= |x| < 19/16 */
+ id = 1;
+ x = (x-1.0)/(x+1.0);
+ }
+ } else {
+ if (ix < 0x40038000) { /* |x| < 2.4375 */
+ id = 2;
+ x = (x-1.5)/(1.0+1.5*x);
+ } else { /* 2.4375 <= |x| < 2^66 */
+ id = 3;
+ x = -1.0/x;
+ }
+ }
+ }
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+ s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+ if (id < 0)
+ return x - x*(s1+s2);
+ z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
+ return sign ? -z : z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atan2.c b/lib/mlibc/options/ansi/musl-generic-math/atan2.c
new file mode 100644
index 0000000..5a1903c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atan2.c
@@ -0,0 +1,107 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* atan2(y,x)
+ * Method :
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ * 2. Reduce x to positive by (if x and y are unexceptional):
+ * ARG (x+iy) = arctan(y/x) ... if x > 0,
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
+ *
+ * Special cases:
+ *
+ * ATAN2((anything), NaN ) is NaN;
+ * ATAN2(NAN , (anything) ) is NaN;
+ * ATAN2(+-0, +(anything but NaN)) is +-0 ;
+ * ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ * ATAN2(+-INF,+INF ) is +-pi/4 ;
+ * ATAN2(+-INF,-INF ) is +-3pi/4;
+ * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "libm.h"
+
+static const double
+pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
+pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+double atan2(double y, double x)
+{
+ double z;
+ uint32_t m,lx,ly,ix,iy;
+
+ if (isnan(x) || isnan(y))
+ return x+y;
+ EXTRACT_WORDS(ix, lx, x);
+ EXTRACT_WORDS(iy, ly, y);
+ if ((ix-0x3ff00000 | lx) == 0) /* x = 1.0 */
+ return atan(y);
+ m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
+ ix = ix & 0x7fffffff;
+ iy = iy & 0x7fffffff;
+
+ /* when y = 0 */
+ if ((iy|ly) == 0) {
+ switch(m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return pi; /* atan(+0,-anything) = pi */
+ case 3: return -pi; /* atan(-0,-anything) =-pi */
+ }
+ }
+ /* when x = 0 */
+ if ((ix|lx) == 0)
+ return m&1 ? -pi/2 : pi/2;
+ /* when x is INF */
+ if (ix == 0x7ff00000) {
+ if (iy == 0x7ff00000) {
+ switch(m) {
+ case 0: return pi/4; /* atan(+INF,+INF) */
+ case 1: return -pi/4; /* atan(-INF,+INF) */
+ case 2: return 3*pi/4; /* atan(+INF,-INF) */
+ case 3: return -3*pi/4; /* atan(-INF,-INF) */
+ }
+ } else {
+ switch(m) {
+ case 0: return 0.0; /* atan(+...,+INF) */
+ case 1: return -0.0; /* atan(-...,+INF) */
+ case 2: return pi; /* atan(+...,-INF) */
+ case 3: return -pi; /* atan(-...,-INF) */
+ }
+ }
+ }
+ /* |y/x| > 0x1p64 */
+ if (ix+(64<<20) < iy || iy == 0x7ff00000)
+ return m&1 ? -pi/2 : pi/2;
+
+ /* z = atan(|y/x|) without spurious underflow */
+ if ((m&2) && iy+(64<<20) < ix) /* |y/x| < 0x1p-64, x<0 */
+ z = 0;
+ else
+ z = atan(fabs(y/x));
+ switch (m) {
+ case 0: return z; /* atan(+,+) */
+ case 1: return -z; /* atan(-,+) */
+ case 2: return pi - (z-pi_lo); /* atan(+,-) */
+ default: /* case 3 */
+ return (z-pi_lo) - pi; /* atan(-,-) */
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atan2f.c b/lib/mlibc/options/ansi/musl-generic-math/atan2f.c
new file mode 100644
index 0000000..c634d00
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atan2f.c
@@ -0,0 +1,83 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+pi = 3.1415927410e+00, /* 0x40490fdb */
+pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */
+
+float atan2f(float y, float x)
+{
+ float z;
+ uint32_t m,ix,iy;
+
+ if (isnan(x) || isnan(y))
+ return x+y;
+ GET_FLOAT_WORD(ix, x);
+ GET_FLOAT_WORD(iy, y);
+ if (ix == 0x3f800000) /* x=1.0 */
+ return atanf(y);
+ m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
+ ix &= 0x7fffffff;
+ iy &= 0x7fffffff;
+
+ /* when y = 0 */
+ if (iy == 0) {
+ switch (m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return pi; /* atan(+0,-anything) = pi */
+ case 3: return -pi; /* atan(-0,-anything) =-pi */
+ }
+ }
+ /* when x = 0 */
+ if (ix == 0)
+ return m&1 ? -pi/2 : pi/2;
+ /* when x is INF */
+ if (ix == 0x7f800000) {
+ if (iy == 0x7f800000) {
+ switch (m) {
+ case 0: return pi/4; /* atan(+INF,+INF) */
+ case 1: return -pi/4; /* atan(-INF,+INF) */
+ case 2: return 3*pi/4; /*atan(+INF,-INF)*/
+ case 3: return -3*pi/4; /*atan(-INF,-INF)*/
+ }
+ } else {
+ switch (m) {
+ case 0: return 0.0f; /* atan(+...,+INF) */
+ case 1: return -0.0f; /* atan(-...,+INF) */
+ case 2: return pi; /* atan(+...,-INF) */
+ case 3: return -pi; /* atan(-...,-INF) */
+ }
+ }
+ }
+ /* |y/x| > 0x1p26 */
+ if (ix+(26<<23) < iy || iy == 0x7f800000)
+ return m&1 ? -pi/2 : pi/2;
+
+ /* z = atan(|y/x|) with correct underflow */
+ if ((m&2) && iy+(26<<23) < ix) /*|y/x| < 0x1p-26, x < 0 */
+ z = 0.0;
+ else
+ z = atanf(fabsf(y/x));
+ switch (m) {
+ case 0: return z; /* atan(+,+) */
+ case 1: return -z; /* atan(-,+) */
+ case 2: return pi - (z-pi_lo); /* atan(+,-) */
+ default: /* case 3 */
+ return (z-pi_lo) - pi; /* atan(-,-) */
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atan2l.c b/lib/mlibc/options/ansi/musl-generic-math/atan2l.c
new file mode 100644
index 0000000..f0937a9
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atan2l.c
@@ -0,0 +1,85 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2l.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/*
+ * See comments in atan2.c.
+ * Converted to long double by David Schultz <das@FreeBSD.ORG>.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double atan2l(long double y, long double x)
+{
+ return atan2(y, x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#include "__invtrigl.h"
+
+long double atan2l(long double y, long double x)
+{
+ union ldshape ux, uy;
+ long double z;
+ int m, ex, ey;
+
+ if (isnan(x) || isnan(y))
+ return x+y;
+ if (x == 1)
+ return atanl(y);
+ ux.f = x;
+ uy.f = y;
+ ex = ux.i.se & 0x7fff;
+ ey = uy.i.se & 0x7fff;
+ m = 2*(ux.i.se>>15) | uy.i.se>>15;
+ if (y == 0) {
+ switch(m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return 2*pio2_hi; /* atan(+0,-anything) = pi */
+ case 3: return -2*pio2_hi; /* atan(-0,-anything) =-pi */
+ }
+ }
+ if (x == 0)
+ return m&1 ? -pio2_hi : pio2_hi;
+ if (ex == 0x7fff) {
+ if (ey == 0x7fff) {
+ switch(m) {
+ case 0: return pio2_hi/2; /* atan(+INF,+INF) */
+ case 1: return -pio2_hi/2; /* atan(-INF,+INF) */
+ case 2: return 1.5*pio2_hi; /* atan(+INF,-INF) */
+ case 3: return -1.5*pio2_hi; /* atan(-INF,-INF) */
+ }
+ } else {
+ switch(m) {
+ case 0: return 0.0; /* atan(+...,+INF) */
+ case 1: return -0.0; /* atan(-...,+INF) */
+ case 2: return 2*pio2_hi; /* atan(+...,-INF) */
+ case 3: return -2*pio2_hi; /* atan(-...,-INF) */
+ }
+ }
+ }
+ if (ex+120 < ey || ey == 0x7fff)
+ return m&1 ? -pio2_hi : pio2_hi;
+ /* z = atan(|y/x|) without spurious underflow */
+ if ((m&2) && ey+120 < ex) /* |y/x| < 0x1p-120, x<0 */
+ z = 0.0;
+ else
+ z = atanl(fabsl(y/x));
+ switch (m) {
+ case 0: return z; /* atan(+,+) */
+ case 1: return -z; /* atan(-,+) */
+ case 2: return 2*pio2_hi-(z-2*pio2_lo); /* atan(+,-) */
+ default: /* case 3 */
+ return (z-2*pio2_lo)-2*pio2_hi; /* atan(-,-) */
+ }
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanf.c b/lib/mlibc/options/ansi/musl-generic-math/atanf.c
new file mode 100644
index 0000000..178341b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atanf.c
@@ -0,0 +1,94 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+
+#include "libm.h"
+
+static const float atanhi[] = {
+ 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+ 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+ 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+ 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+};
+
+static const float atanlo[] = {
+ 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+ 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+ 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+ 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+};
+
+static const float aT[] = {
+ 3.3333328366e-01,
+ -1.9999158382e-01,
+ 1.4253635705e-01,
+ -1.0648017377e-01,
+ 6.1687607318e-02,
+};
+
+float atanf(float x)
+{
+ float_t w,s1,s2,z;
+ uint32_t ix,sign;
+ int id;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
+ if (isnan(x))
+ return x;
+ z = atanhi[3] + 0x1p-120f;
+ return sign ? -z : z;
+ }
+ if (ix < 0x3ee00000) { /* |x| < 0.4375 */
+ if (ix < 0x39800000) { /* |x| < 2**-12 */
+ if (ix < 0x00800000)
+ /* raise underflow for subnormal x */
+ FORCE_EVAL(x*x);
+ return x;
+ }
+ id = -1;
+ } else {
+ x = fabsf(x);
+ if (ix < 0x3f980000) { /* |x| < 1.1875 */
+ if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
+ id = 0;
+ x = (2.0f*x - 1.0f)/(2.0f + x);
+ } else { /* 11/16 <= |x| < 19/16 */
+ id = 1;
+ x = (x - 1.0f)/(x + 1.0f);
+ }
+ } else {
+ if (ix < 0x401c0000) { /* |x| < 2.4375 */
+ id = 2;
+ x = (x - 1.5f)/(1.0f + 1.5f*x);
+ } else { /* 2.4375 <= |x| < 2**26 */
+ id = 3;
+ x = -1.0f/x;
+ }
+ }
+ }
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ s1 = z*(aT[0]+w*(aT[2]+w*aT[4]));
+ s2 = w*(aT[1]+w*aT[3]);
+ if (id < 0)
+ return x - x*(s1+s2);
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return sign ? -z : z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanh.c b/lib/mlibc/options/ansi/musl-generic-math/atanh.c
new file mode 100644
index 0000000..63a035d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atanh.c
@@ -0,0 +1,29 @@
+#include "libm.h"
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+double atanh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ unsigned e = u.i >> 52 & 0x7ff;
+ unsigned s = u.i >> 63;
+ double_t y;
+
+ /* |x| */
+ u.i &= (uint64_t)-1/2;
+ y = u.f;
+
+ if (e < 0x3ff - 1) {
+ if (e < 0x3ff - 32) {
+ /* handle underflow */
+ if (e == 0)
+ FORCE_EVAL((float)y);
+ } else {
+ /* |x| < 0.5, up to 1.7ulp error */
+ y = 0.5*log1p(2*y + 2*y*y/(1-y));
+ }
+ } else {
+ /* avoid overflow */
+ y = 0.5*log1p(2*(y/(1-y)));
+ }
+ return s ? -y : y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanhf.c b/lib/mlibc/options/ansi/musl-generic-math/atanhf.c
new file mode 100644
index 0000000..65f07c0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atanhf.c
@@ -0,0 +1,28 @@
+#include "libm.h"
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+float atanhf(float x)
+{
+ union {float f; uint32_t i;} u = {.f = x};
+ unsigned s = u.i >> 31;
+ float_t y;
+
+ /* |x| */
+ u.i &= 0x7fffffff;
+ y = u.f;
+
+ if (u.i < 0x3f800000 - (1<<23)) {
+ if (u.i < 0x3f800000 - (32<<23)) {
+ /* handle underflow */
+ if (u.i < (1<<23))
+ FORCE_EVAL((float)(y*y));
+ } else {
+ /* |x| < 0.5, up to 1.7ulp error */
+ y = 0.5f*log1pf(2*y + 2*y*y/(1-y));
+ }
+ } else {
+ /* avoid overflow */
+ y = 0.5f*log1pf(2*(y/(1-y)));
+ }
+ return s ? -y : y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanhl.c b/lib/mlibc/options/ansi/musl-generic-math/atanhl.c
new file mode 100644
index 0000000..87cd1cd
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atanhl.c
@@ -0,0 +1,35 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double atanhl(long double x)
+{
+ return atanh(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+long double atanhl(long double x)
+{
+ union ldshape u = {x};
+ unsigned e = u.i.se & 0x7fff;
+ unsigned s = u.i.se >> 15;
+
+ /* |x| */
+ u.i.se = e;
+ x = u.f;
+
+ if (e < 0x3ff - 1) {
+ if (e < 0x3ff - LDBL_MANT_DIG/2) {
+ /* handle underflow */
+ if (e == 0)
+ FORCE_EVAL((float)x);
+ } else {
+ /* |x| < 0.5, up to 1.7ulp error */
+ x = 0.5*log1pl(2*x + 2*x*x/(1-x));
+ }
+ } else {
+ /* avoid overflow */
+ x = 0.5*log1pl(2*(x/(1-x)));
+ }
+ return s ? -x : x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanl.c b/lib/mlibc/options/ansi/musl-generic-math/atanl.c
new file mode 100644
index 0000000..79a3edb
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/atanl.c
@@ -0,0 +1,184 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in atan.c.
+ * Converted to long double by David Schultz <das@FreeBSD.ORG>.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double atanl(long double x)
+{
+ return atan(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+#if LDBL_MANT_DIG == 64
+#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
+
+static const long double atanhi[] = {
+ 4.63647609000806116202e-01L,
+ 7.85398163397448309628e-01L,
+ 9.82793723247329067960e-01L,
+ 1.57079632679489661926e+00L,
+};
+
+static const long double atanlo[] = {
+ 1.18469937025062860669e-20L,
+ -1.25413940316708300586e-20L,
+ 2.55232234165405176172e-20L,
+ -2.50827880633416601173e-20L,
+};
+
+static const long double aT[] = {
+ 3.33333333333333333017e-01L,
+ -1.99999999999999632011e-01L,
+ 1.42857142857046531280e-01L,
+ -1.11111111100562372733e-01L,
+ 9.09090902935647302252e-02L,
+ -7.69230552476207730353e-02L,
+ 6.66661718042406260546e-02L,
+ -5.88158892835030888692e-02L,
+ 5.25499891539726639379e-02L,
+ -4.70119845393155721494e-02L,
+ 4.03539201366454414072e-02L,
+ -2.91303858419364158725e-02L,
+ 1.24822046299269234080e-02L,
+};
+
+static long double T_even(long double x)
+{
+ return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
+ x * (aT[8] + x * (aT[10] + x * aT[12])))));
+}
+
+static long double T_odd(long double x)
+{
+ return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
+ x * (aT[9] + x * aT[11]))));
+}
+#elif LDBL_MANT_DIG == 113
+#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
+
+const long double atanhi[] = {
+ 4.63647609000806116214256231461214397e-01L,
+ 7.85398163397448309615660845819875699e-01L,
+ 9.82793723247329067985710611014666038e-01L,
+ 1.57079632679489661923132169163975140e+00L,
+};
+
+const long double atanlo[] = {
+ 4.89509642257333492668618435220297706e-36L,
+ 2.16795253253094525619926100651083806e-35L,
+ -2.31288434538183565909319952098066272e-35L,
+ 4.33590506506189051239852201302167613e-35L,
+};
+
+const long double aT[] = {
+ 3.33333333333333333333333333333333125e-01L,
+ -1.99999999999999999999999999999180430e-01L,
+ 1.42857142857142857142857142125269827e-01L,
+ -1.11111111111111111111110834490810169e-01L,
+ 9.09090909090909090908522355708623681e-02L,
+ -7.69230769230769230696553844935357021e-02L,
+ 6.66666666666666660390096773046256096e-02L,
+ -5.88235294117646671706582985209643694e-02L,
+ 5.26315789473666478515847092020327506e-02L,
+ -4.76190476189855517021024424991436144e-02L,
+ 4.34782608678695085948531993458097026e-02L,
+ -3.99999999632663469330634215991142368e-02L,
+ 3.70370363987423702891250829918659723e-02L,
+ -3.44827496515048090726669907612335954e-02L,
+ 3.22579620681420149871973710852268528e-02L,
+ -3.03020767654269261041647570626778067e-02L,
+ 2.85641979882534783223403715930946138e-02L,
+ -2.69824879726738568189929461383741323e-02L,
+ 2.54194698498808542954187110873675769e-02L,
+ -2.35083879708189059926183138130183215e-02L,
+ 2.04832358998165364349957325067131428e-02L,
+ -1.54489555488544397858507248612362957e-02L,
+ 8.64492360989278761493037861575248038e-03L,
+ -2.58521121597609872727919154569765469e-03L,
+};
+
+static long double T_even(long double x)
+{
+ return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
+ x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
+ x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
+}
+
+static long double T_odd(long double x)
+{
+ return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
+ x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
+ x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
+}
+#endif
+
+long double atanl(long double x)
+{
+ union ldshape u = {x};
+ long double w, s1, s2, z;
+ int id;
+ unsigned e = u.i.se & 0x7fff;
+ unsigned sign = u.i.se >> 15;
+ unsigned expman;
+
+ if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
+ if (isnan(x))
+ return x;
+ return sign ? -atanhi[3] : atanhi[3];
+ }
+ /* Extract the exponent and the first few bits of the mantissa. */
+ expman = EXPMAN(u);
+ if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
+ if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) { /* if |x| is small, atanl(x)~=x */
+ /* raise underflow if subnormal */
+ if (e == 0)
+ FORCE_EVAL((float)x);
+ return x;
+ }
+ id = -1;
+ } else {
+ x = fabsl(x);
+ if (expman < (0x3fff << 8) + 0x30) { /* |x| < 1.1875 */
+ if (expman < ((0x3fff - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */
+ id = 0;
+ x = (2.0*x-1.0)/(2.0+x);
+ } else { /* 11/16 <= |x| < 19/16 */
+ id = 1;
+ x = (x-1.0)/(x+1.0);
+ }
+ } else {
+ if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
+ id = 2;
+ x = (x-1.5)/(1.0+1.5*x);
+ } else { /* 2.4375 <= |x| */
+ id = 3;
+ x = -1.0/x;
+ }
+ }
+ }
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum aT[i]z**(i+1) into odd and even poly */
+ s1 = z*T_even(w);
+ s2 = w*T_odd(w);
+ if (id < 0)
+ return x - x*(s1+s2);
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return sign ? -z : z;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrt.c b/lib/mlibc/options/ansi/musl-generic-math/cbrt.c
new file mode 100644
index 0000000..7599d3e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cbrt.c
@@ -0,0 +1,103 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * Optimized by Bruce D. Evans.
+ */
+/* cbrt(x)
+ * Return cube root of x
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const uint32_t
+B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
+B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
+
+/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
+static const double
+P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
+P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
+P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
+P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
+P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
+
+double cbrt(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t r,s,t,w;
+ uint32_t hx = u.i>>32 & 0x7fffffff;
+
+ if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
+ return x+x;
+
+ /*
+ * Rough cbrt to 5 bits:
+ * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
+ * where e is integral and >= 0, m is real and in [0, 1), and "/" and
+ * "%" are integer division and modulus with rounding towards minus
+ * infinity. The RHS is always >= the LHS and has a maximum relative
+ * error of about 1 in 16. Adding a bias of -0.03306235651 to the
+ * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
+ * floating point representation, for finite positive normal values,
+ * ordinary integer divison of the value in bits magically gives
+ * almost exactly the RHS of the above provided we first subtract the
+ * exponent bias (1023 for doubles) and later add it back. We do the
+ * subtraction virtually to keep e >= 0 so that ordinary integer
+ * division rounds towards minus infinity; this is also efficient.
+ */
+ if (hx < 0x00100000) { /* zero or subnormal? */
+ u.f = x*0x1p54;
+ hx = u.i>>32 & 0x7fffffff;
+ if (hx == 0)
+ return x; /* cbrt(0) is itself */
+ hx = hx/3 + B2;
+ } else
+ hx = hx/3 + B1;
+ u.i &= 1ULL<<63;
+ u.i |= (uint64_t)hx << 32;
+ t = u.f;
+
+ /*
+ * New cbrt to 23 bits:
+ * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
+ * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
+ * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
+ * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
+ * gives us bounds for r = t**3/x.
+ *
+ * Try to optimize for parallel evaluation as in __tanf.c.
+ */
+ r = (t*t)*(t/x);
+ t = t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
+
+ /*
+ * Round t away from zero to 23 bits (sloppily except for ensuring that
+ * the result is larger in magnitude than cbrt(x) but not much more than
+ * 2 23-bit ulps larger). With rounding towards zero, the error bound
+ * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
+ * in the rounded t, the infinite-precision error in the Newton
+ * approximation barely affects third digit in the final error
+ * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
+ * before the final error is larger than 0.667 ulps.
+ */
+ u.f = t;
+ u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
+ t = u.f;
+
+ /* one step Newton iteration to 53 bits with error < 0.667 ulps */
+ s = t*t; /* t*t is exact */
+ r = x/s; /* error <= 0.5 ulps; |r| < |t| */
+ w = t+t; /* t+t is exact */
+ r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
+ t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
+ return t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c
new file mode 100644
index 0000000..89c2c86
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c
@@ -0,0 +1,66 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cbrtf(x)
+ * Return cube root of x
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const unsigned
+B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+
+float cbrtf(float x)
+{
+ double_t r,T;
+ union {float f; uint32_t i;} u = {x};
+ uint32_t hx = u.i & 0x7fffffff;
+
+ if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
+ return x + x;
+
+ /* rough cbrt to 5 bits */
+ if (hx < 0x00800000) { /* zero or subnormal? */
+ if (hx == 0)
+ return x; /* cbrt(+-0) is itself */
+ u.f = x*0x1p24f;
+ hx = u.i & 0x7fffffff;
+ hx = hx/3 + B2;
+ } else
+ hx = hx/3 + B1;
+ u.i &= 0x80000000;
+ u.i |= hx;
+
+ /*
+ * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
+ * double precision so that its terms can be arranged for efficiency
+ * without causing overflow or underflow.
+ */
+ T = u.f;
+ r = T*T*T;
+ T = T*((double_t)x+x+r)/(x+r+r);
+
+ /*
+ * Second step Newton iteration to 47 bits. In double precision for
+ * efficiency and accuracy.
+ */
+ r = T*T*T;
+ T = T*((double_t)x+x+r)/(x+r+r);
+
+ /* rounding to 24 bits is perfect in round-to-nearest mode */
+ return T;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c
new file mode 100644
index 0000000..ceff913
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c
@@ -0,0 +1,124 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtl.c */
+/*-
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * The argument reduction and testing for exceptional cases was
+ * written by Steven G. Kargl with input from Bruce D. Evans
+ * and David A. Schultz.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double cbrtl(long double x)
+{
+ return cbrt(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+
+long double cbrtl(long double x)
+{
+ union ldshape u = {x}, v;
+ union {float f; uint32_t i;} uft;
+ long double r, s, t, w;
+ double_t dr, dt, dx;
+ float_t ft;
+ int e = u.i.se & 0x7fff;
+ int sign = u.i.se & 0x8000;
+
+ /*
+ * If x = +-Inf, then cbrt(x) = +-Inf.
+ * If x = NaN, then cbrt(x) = NaN.
+ */
+ if (e == 0x7fff)
+ return x + x;
+ if (e == 0) {
+ /* Adjust subnormal numbers. */
+ u.f *= 0x1p120;
+ e = u.i.se & 0x7fff;
+ /* If x = +-0, then cbrt(x) = +-0. */
+ if (e == 0)
+ return x;
+ e -= 120;
+ }
+ e -= 0x3fff;
+ u.i.se = 0x3fff;
+ x = u.f;
+ switch (e % 3) {
+ case 1:
+ case -2:
+ x *= 2;
+ e--;
+ break;
+ case 2:
+ case -1:
+ x *= 4;
+ e -= 2;
+ break;
+ }
+ v.f = 1.0;
+ v.i.se = sign | (0x3fff + e/3);
+
+ /*
+ * The following is the guts of s_cbrtf, with the handling of
+ * special values removed and extra care for accuracy not taken,
+ * but with most of the extra accuracy not discarded.
+ */
+
+ /* ~5-bit estimate: */
+ uft.f = x;
+ uft.i = (uft.i & 0x7fffffff)/3 + B1;
+ ft = uft.f;
+
+ /* ~16-bit estimate: */
+ dx = x;
+ dt = ft;
+ dr = dt * dt * dt;
+ dt = dt * (dx + dx + dr) / (dx + dr + dr);
+
+ /* ~47-bit estimate: */
+ dr = dt * dt * dt;
+ dt = dt * (dx + dx + dr) / (dx + dr + dr);
+
+#if LDBL_MANT_DIG == 64
+ /*
+ * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
+ * Round it away from zero to 32 bits (32 so that t*t is exact, and
+ * away from zero for technical reasons).
+ */
+ t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32;
+#elif LDBL_MANT_DIG == 113
+ /*
+ * Round dt away from zero to 47 bits. Since we don't trust the 47,
+ * add 2 47-bit ulps instead of 1 to round up. Rounding is slow and
+ * might be avoidable in this case, since on most machines dt will
+ * have been evaluated in 53-bit precision and the technical reasons
+ * for rounding up might not apply to either case in cbrtl() since
+ * dt is much more accurate than needed.
+ */
+ t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
+#endif
+
+ /*
+ * Final step Newton iteration to 64 or 113 bits with
+ * error < 0.667 ulps
+ */
+ s = t*t; /* t*t is exact */
+ r = x/s; /* error <= 0.5 ulps; |r| < |t| */
+ w = t+t; /* t+t is exact */
+ r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
+ t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
+
+ t *= v.f;
+ return t;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ceil.c b/lib/mlibc/options/ansi/musl-generic-math/ceil.c
new file mode 100644
index 0000000..b13e6f2
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ceil.c
@@ -0,0 +1,31 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const double_t toint = 1/EPS;
+
+double ceil(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = u.i >> 52 & 0x7ff;
+ double_t y;
+
+ if (e >= 0x3ff+52 || x == 0)
+ return x;
+ /* y = int(x) - x, where int(x) is an integer neighbor of x */
+ if (u.i >> 63)
+ y = x - toint + toint - x;
+ else
+ y = x + toint - toint - x;
+ /* special case because of non-nearest rounding modes */
+ if (e <= 0x3ff-1) {
+ FORCE_EVAL(y);
+ return u.i >> 63 ? -0.0 : 1;
+ }
+ if (y < 0)
+ return x + y + 1;
+ return x + y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ceilf.c b/lib/mlibc/options/ansi/musl-generic-math/ceilf.c
new file mode 100644
index 0000000..869835f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ceilf.c
@@ -0,0 +1,27 @@
+#include "libm.h"
+
+float ceilf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = (int)(u.i >> 23 & 0xff) - 0x7f;
+ uint32_t m;
+
+ if (e >= 23)
+ return x;
+ if (e >= 0) {
+ m = 0x007fffff >> e;
+ if ((u.i & m) == 0)
+ return x;
+ FORCE_EVAL(x + 0x1p120f);
+ if (u.i >> 31 == 0)
+ u.i += m;
+ u.i &= ~m;
+ } else {
+ FORCE_EVAL(x + 0x1p120f);
+ if (u.i >> 31)
+ u.f = -0.0;
+ else if (u.i << 1)
+ u.f = 1.0;
+ }
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ceill.c b/lib/mlibc/options/ansi/musl-generic-math/ceill.c
new file mode 100644
index 0000000..60a8302
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ceill.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double ceill(long double x)
+{
+ return ceil(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double ceill(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ long double y;
+
+ if (e >= 0x3fff+LDBL_MANT_DIG-1 || x == 0)
+ return x;
+ /* y = int(x) - x, where int(x) is an integer neighbor of x */
+ if (u.i.se >> 15)
+ y = x - toint + toint - x;
+ else
+ y = x + toint - toint - x;
+ /* special case because of non-nearest rounding modes */
+ if (e <= 0x3fff-1) {
+ FORCE_EVAL(y);
+ return u.i.se >> 15 ? -0.0 : 1;
+ }
+ if (y < 0)
+ return x + y + 1;
+ return x + y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/copysign.c b/lib/mlibc/options/ansi/musl-generic-math/copysign.c
new file mode 100644
index 0000000..b09331b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/copysign.c
@@ -0,0 +1,8 @@
+#include "libm.h"
+
+double copysign(double x, double y) {
+ union {double f; uint64_t i;} ux={x}, uy={y};
+ ux.i &= -1ULL/2;
+ ux.i |= uy.i & 1ULL<<63;
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/copysignf.c b/lib/mlibc/options/ansi/musl-generic-math/copysignf.c
new file mode 100644
index 0000000..0af6ae9
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/copysignf.c
@@ -0,0 +1,10 @@
+#include <math.h>
+#include <stdint.h>
+
+float copysignf(float x, float y)
+{
+ union {float f; uint32_t i;} ux={x}, uy={y};
+ ux.i &= 0x7fffffff;
+ ux.i |= uy.i & 0x80000000;
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/copysignl.c b/lib/mlibc/options/ansi/musl-generic-math/copysignl.c
new file mode 100644
index 0000000..9dd933c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/copysignl.c
@@ -0,0 +1,16 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double copysignl(long double x, long double y)
+{
+ return copysign(x, y);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double copysignl(long double x, long double y)
+{
+ union ldshape ux = {x}, uy = {y};
+ ux.i.se &= 0x7fff;
+ ux.i.se |= uy.i.se & 0x8000;
+ return ux.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cos.c b/lib/mlibc/options/ansi/musl-generic-math/cos.c
new file mode 100644
index 0000000..ee97f68
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cos.c
@@ -0,0 +1,77 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ * __sin ... sine function on [-pi/4,pi/4]
+ * __cos ... cosine function on [-pi/4,pi/4]
+ * __rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "libm.h"
+
+double cos(double x)
+{
+ double y[2];
+ uint32_t ix;
+ unsigned n;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if (ix <= 0x3fe921fb) {
+ if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
+ /* raise inexact if x!=0 */
+ FORCE_EVAL(x + 0x1p120f);
+ return 1.0;
+ }
+ return __cos(x, 0);
+ }
+
+ /* cos(Inf or NaN) is NaN */
+ if (ix >= 0x7ff00000)
+ return x-x;
+
+ /* argument reduction */
+ n = __rem_pio2(x, y);
+ switch (n&3) {
+ case 0: return __cos(y[0], y[1]);
+ case 1: return -__sin(y[0], y[1], 1);
+ case 2: return -__cos(y[0], y[1]);
+ default:
+ return __sin(y[0], y[1], 1);
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cosf.c b/lib/mlibc/options/ansi/musl-generic-math/cosf.c
new file mode 100644
index 0000000..23f3e5b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cosf.c
@@ -0,0 +1,78 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* Small multiples of pi/2 rounded to double precision. */
+static const double
+c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
+c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
+c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+
+float cosf(float x)
+{
+ double y;
+ uint32_t ix;
+ unsigned n, sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix >> 31;
+ ix &= 0x7fffffff;
+
+ if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
+ if (ix < 0x39800000) { /* |x| < 2**-12 */
+ /* raise inexact if x != 0 */
+ FORCE_EVAL(x + 0x1p120f);
+ return 1.0f;
+ }
+ return __cosdf(x);
+ }
+ if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
+ if (ix > 0x4016cbe3) /* |x| ~> 3*pi/4 */
+ return -__cosdf(sign ? x+c2pio2 : x-c2pio2);
+ else {
+ if (sign)
+ return __sindf(x + c1pio2);
+ else
+ return __sindf(c1pio2 - x);
+ }
+ }
+ if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
+ if (ix > 0x40afeddf) /* |x| ~> 7*pi/4 */
+ return __cosdf(sign ? x+c4pio2 : x-c4pio2);
+ else {
+ if (sign)
+ return __sindf(-x - c3pio2);
+ else
+ return __sindf(x - c3pio2);
+ }
+ }
+
+ /* cos(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000)
+ return x-x;
+
+ /* general argument reduction needed */
+ n = __rem_pio2f(x,&y);
+ switch (n&3) {
+ case 0: return __cosdf(y);
+ case 1: return __sindf(-y);
+ case 2: return -__cosdf(y);
+ default:
+ return __sindf(y);
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cosh.c b/lib/mlibc/options/ansi/musl-generic-math/cosh.c
new file mode 100644
index 0000000..100f823
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cosh.c
@@ -0,0 +1,40 @@
+#include "libm.h"
+
+/* cosh(x) = (exp(x) + 1/exp(x))/2
+ * = 1 + 0.5*(exp(x)-1)*(exp(x)-1)/exp(x)
+ * = 1 + x*x/2 + o(x^4)
+ */
+double cosh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ uint32_t w;
+ double t;
+
+ /* |x| */
+ u.i &= (uint64_t)-1/2;
+ x = u.f;
+ w = u.i >> 32;
+
+ /* |x| < log(2) */
+ if (w < 0x3fe62e42) {
+ if (w < 0x3ff00000 - (26<<20)) {
+ /* raise inexact if x!=0 */
+ FORCE_EVAL(x + 0x1p120f);
+ return 1;
+ }
+ t = expm1(x);
+ return 1 + t*t/(2*(1+t));
+ }
+
+ /* |x| < log(DBL_MAX) */
+ if (w < 0x40862e42) {
+ t = exp(x);
+ /* note: if x>log(0x1p26) then the 1/t is not needed */
+ return 0.5*(t + 1/t);
+ }
+
+ /* |x| > log(DBL_MAX) or nan */
+ /* note: the result is stored to handle overflow */
+ t = __expo2(x);
+ return t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/coshf.c b/lib/mlibc/options/ansi/musl-generic-math/coshf.c
new file mode 100644
index 0000000..b09f2ee
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/coshf.c
@@ -0,0 +1,33 @@
+#include "libm.h"
+
+float coshf(float x)
+{
+ union {float f; uint32_t i;} u = {.f = x};
+ uint32_t w;
+ float t;
+
+ /* |x| */
+ u.i &= 0x7fffffff;
+ x = u.f;
+ w = u.i;
+
+ /* |x| < log(2) */
+ if (w < 0x3f317217) {
+ if (w < 0x3f800000 - (12<<23)) {
+ FORCE_EVAL(x + 0x1p120f);
+ return 1;
+ }
+ t = expm1f(x);
+ return 1 + t*t/(2*(1+t));
+ }
+
+ /* |x| < log(FLT_MAX) */
+ if (w < 0x42b17217) {
+ t = expf(x);
+ return 0.5f*(t + 1/t);
+ }
+
+ /* |x| > log(FLT_MAX) or nan */
+ t = __expo2f(x);
+ return t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/coshl.c b/lib/mlibc/options/ansi/musl-generic-math/coshl.c
new file mode 100644
index 0000000..06a56fe
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/coshl.c
@@ -0,0 +1,47 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double coshl(long double x)
+{
+ return cosh(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+long double coshl(long double x)
+{
+ union ldshape u = {x};
+ unsigned ex = u.i.se & 0x7fff;
+ uint32_t w;
+ long double t;
+
+ /* |x| */
+ u.i.se = ex;
+ x = u.f;
+ w = u.i.m >> 32;
+
+ /* |x| < log(2) */
+ if (ex < 0x3fff-1 || (ex == 0x3fff-1 && w < 0xb17217f7)) {
+ if (ex < 0x3fff-32) {
+ FORCE_EVAL(x + 0x1p120f);
+ return 1;
+ }
+ t = expm1l(x);
+ return 1 + t*t/(2*(1+t));
+ }
+
+ /* |x| < log(LDBL_MAX) */
+ if (ex < 0x3fff+13 || (ex == 0x3fff+13 && w < 0xb17217f7)) {
+ t = expl(x);
+ return 0.5*(t + 1/t);
+ }
+
+ /* |x| > log(LDBL_MAX) or nan */
+ t = expl(0.5*x);
+ return 0.5*t*t;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double coshl(long double x)
+{
+ return cosh(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cosl.c b/lib/mlibc/options/ansi/musl-generic-math/cosl.c
new file mode 100644
index 0000000..79c41c7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cosl.c
@@ -0,0 +1,39 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double cosl(long double x) {
+ return cos(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double cosl(long double x)
+{
+ union ldshape u = {x};
+ unsigned n;
+ long double y[2], hi, lo;
+
+ u.i.se &= 0x7fff;
+ if (u.i.se == 0x7fff)
+ return x - x;
+ x = u.f;
+ if (x < M_PI_4) {
+ if (u.i.se < 0x3fff - LDBL_MANT_DIG)
+ /* raise inexact if x!=0 */
+ return 1.0 + x;
+ return __cosl(x, 0);
+ }
+ n = __rem_pio2l(x, y);
+ hi = y[0];
+ lo = y[1];
+ switch (n & 3) {
+ case 0:
+ return __cosl(hi, lo);
+ case 1:
+ return -__sinl(hi, lo, 1);
+ case 2:
+ return -__cosl(hi, lo);
+ case 3:
+ default:
+ return __sinl(hi, lo, 1);
+ }
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/erf.c b/lib/mlibc/options/ansi/musl-generic-math/erf.c
new file mode 100644
index 0000000..2f30a29
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/erf.c
@@ -0,0 +1,273 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. For |x| in [0, 0.84375]
+ * erf(x) = x + x*R(x^2)
+ * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+ * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+ * where R = P/Q where P is an odd poly of degree 8 and
+ * Q is an odd poly of degree 10.
+ * -57.90
+ * | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fix
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = sign(x) * (c + P1(s)/Q1(s))
+ * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+ * 1+(c+P1(s)/Q1(s)) if x < 0
+ * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * That is, we use rational approximation to approximate
+ * erf(1+s) - (c = (single)0.84506291151)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ * where
+ * P1(s) = degree 6 poly in s
+ * Q1(s) = degree 6 poly in s
+ *
+ * 3. For x in [1.25,1/0.35(~2.857143)],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ * erf(x) = 1 - erfc(x)
+ * where
+ * R1(z) = degree 7 poly in z, (z=1/x^2)
+ * S1(z) = degree 8 poly in z
+ *
+ * 4. For x in [1/0.35,28]
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ * = 2.0 - tiny (if x <= -6)
+ * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ * erf(x) = sign(x)*(1.0 - tiny)
+ * where
+ * R2(z) = degree 6 poly in z, (z=1/x^2)
+ * S2(z) = degree 7 poly in z
+ *
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ * We use rational approximation to approximate
+ * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ * Here is the error bound for R1/S1 and R2/S2
+ * |R1/S1 - f(x)| < 2**(-62.57)
+ * |R2/S2 - f(x)| < 2**(-61.52)
+ *
+ * 5. For inf > x >= 28
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+#include "libm.h"
+
+static const double
+erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
+qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
+qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
+sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
+sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+static double erfc1(double x)
+{
+ double_t s,P,Q;
+
+ s = fabs(x) - 1;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ return 1 - erx - P/Q;
+}
+
+static double erfc2(uint32_t ix, double x)
+{
+ double_t s,R,S;
+ double z;
+
+ if (ix < 0x3ff40000) /* |x| < 1.25 */
+ return erfc1(x);
+
+ x = fabs(x);
+ s = 1/(x*x);
+ if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
+ R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| > 1/.35 */
+ R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ z = x;
+ SET_LOW_WORD(z,0);
+ return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
+}
+
+double erf(double x)
+{
+ double r,s,z,y;
+ uint32_t ix;
+ int sign;
+
+ GET_HIGH_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7ff00000) {
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1-2*sign + 1/x;
+ }
+ if (ix < 0x3feb0000) { /* |x| < 0.84375 */
+ if (ix < 0x3e300000) { /* |x| < 2**-28 */
+ /* avoid underflow */
+ return 0.125*(8*x + efx8*x);
+ }
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ return x + x*y;
+ }
+ if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
+ y = 1 - erfc2(ix,x);
+ else
+ y = 1 - 0x1p-1022;
+ return sign ? -y : y;
+}
+
+double erfc(double x)
+{
+ double r,s,z,y;
+ uint32_t ix;
+ int sign;
+
+ GET_HIGH_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7ff00000) {
+ /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+ return 2*sign + 1/x;
+ }
+ if (ix < 0x3feb0000) { /* |x| < 0.84375 */
+ if (ix < 0x3c700000) /* |x| < 2**-56 */
+ return 1.0 - x;
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ if (sign || ix < 0x3fd00000) { /* x < 1/4 */
+ return 1.0 - (x+x*y);
+ }
+ return 0.5 - (x - 0.5 + x*y);
+ }
+ if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
+ return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
+ }
+ return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/erff.c b/lib/mlibc/options/ansi/musl-generic-math/erff.c
new file mode 100644
index 0000000..ed5f397
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/erff.c
@@ -0,0 +1,183 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+erx = 8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx8 = 1.0270333290e+00, /* 0x3f8375d4 */
+pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
+pp1 = -3.2504209876e-01, /* 0xbea66beb */
+pp2 = -2.8481749818e-02, /* 0xbce9528f */
+pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
+qq2 = 6.5022252500e-02, /* 0x3d852a63 */
+qq3 = 5.0813062117e-03, /* 0x3ba68116 */
+qq4 = 1.3249473704e-04, /* 0x390aee49 */
+qq5 = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1 = 4.1485610604e-01, /* 0x3ed46805 */
+pa2 = -3.7220788002e-01, /* 0xbebe9208 */
+pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
+pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
+pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
+qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
+qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
+qa4 = 1.2617121637e-01, /* 0x3e013307 */
+qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
+qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+ra0 = -9.8649440333e-03, /* 0xbc21a093 */
+ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2 = -1.0558626175e+01, /* 0xc128f022 */
+ra3 = -6.2375331879e+01, /* 0xc2798057 */
+ra4 = -1.6239666748e+02, /* 0xc322658c */
+ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6 = -8.1287437439e+01, /* 0xc2a2932b */
+ra7 = -9.8143291473e+00, /* 0xc11d077e */
+sa1 = 1.9651271820e+01, /* 0x419d35ce */
+sa2 = 1.3765776062e+02, /* 0x4309a863 */
+sa3 = 4.3456588745e+02, /* 0x43d9486f */
+sa4 = 6.4538726807e+02, /* 0x442158c9 */
+sa5 = 4.2900814819e+02, /* 0x43d6810b */
+sa6 = 1.0863500214e+02, /* 0x42d9451f */
+sa7 = 6.5702495575e+00, /* 0x40d23f7c */
+sa8 = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.8649431020e-03, /* 0xbc21a092 */
+rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2 = -1.7757955551e+01, /* 0xc18e104b */
+rb3 = -1.6063638306e+02, /* 0xc320a2ea */
+rb4 = -6.3756646729e+02, /* 0xc41f6441 */
+rb5 = -1.0250950928e+03, /* 0xc480230b */
+rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1 = 3.0338060379e+01, /* 0x41f2b459 */
+sb2 = 3.2579251099e+02, /* 0x43a2e571 */
+sb3 = 1.5367296143e+03, /* 0x44c01759 */
+sb4 = 3.1998581543e+03, /* 0x4547fdbb */
+sb5 = 2.5530502930e+03, /* 0x451f90ce */
+sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
+sb7 = -2.2440952301e+01; /* 0xc1b38712 */
+
+static float erfc1(float x)
+{
+ float_t s,P,Q;
+
+ s = fabsf(x) - 1;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ return 1 - erx - P/Q;
+}
+
+static float erfc2(uint32_t ix, float x)
+{
+ float_t s,R,S;
+ float z;
+
+ if (ix < 0x3fa00000) /* |x| < 1.25 */
+ return erfc1(x);
+
+ x = fabsf(x);
+ s = 1/(x*x);
+ if (ix < 0x4036db6d) { /* |x| < 1/0.35 */
+ R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| >= 1/0.35 */
+ R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ GET_FLOAT_WORD(ix, x);
+ SET_FLOAT_WORD(z, ix&0xffffe000);
+ return expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S)/x;
+}
+
+float erff(float x)
+{
+ float r,s,z,y;
+ uint32_t ix;
+ int sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7f800000) {
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1-2*sign + 1/x;
+ }
+ if (ix < 0x3f580000) { /* |x| < 0.84375 */
+ if (ix < 0x31800000) { /* |x| < 2**-28 */
+ /*avoid underflow */
+ return 0.125f*(8*x + efx8*x);
+ }
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = 1+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ return x + x*y;
+ }
+ if (ix < 0x40c00000) /* |x| < 6 */
+ y = 1 - erfc2(ix,x);
+ else
+ y = 1 - 0x1p-120f;
+ return sign ? -y : y;
+}
+
+float erfcf(float x)
+{
+ float r,s,z,y;
+ uint32_t ix;
+ int sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7f800000) {
+ /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+ return 2*sign + 1/x;
+ }
+
+ if (ix < 0x3f580000) { /* |x| < 0.84375 */
+ if (ix < 0x23800000) /* |x| < 2**-56 */
+ return 1.0f - x;
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ if (sign || ix < 0x3e800000) /* x < 1/4 */
+ return 1.0f - (x+x*y);
+ return 0.5f - (x - 0.5f + x*y);
+ }
+ if (ix < 0x41e00000) { /* |x| < 28 */
+ return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
+ }
+ return sign ? 2 - 0x1p-120f : 0x1p-120f*0x1p-120f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/erfl.c b/lib/mlibc/options/ansi/musl-generic-math/erfl.c
new file mode 100644
index 0000000..e267c23
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/erfl.c
@@ -0,0 +1,353 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_erfl.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. For |x| in [0, 0.84375]
+ * erf(x) = x + x*R(x^2)
+ * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+ * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fix
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = sign(x) * (c + P1(s)/Q1(s))
+ * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+ * 1+(c+P1(s)/Q1(s)) if x < 0
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *
+ * 3. For x in [1.25,1/0.35(~2.857143)],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z))
+ * z=1/x^2
+ * erf(x) = 1 - erfc(x)
+ *
+ * 4. For x in [1/0.35,107]
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z))
+ * if -6.666<x<0
+ * = 2.0 - tiny (if x <= -6.666)
+ * z=1/x^2
+ * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else
+ * erf(x) = sign(x)*(1.0 - tiny)
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ *
+ * 5. For inf > x >= 107
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double erfl(long double x)
+{
+ return erf(x);
+}
+long double erfcl(long double x)
+{
+ return erfc(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+static const long double
+erx = 0.845062911510467529296875L,
+
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+/* 8 * (2/sqrt(pi) - 1) */
+efx8 = 1.0270333367641005911692712249723613735048E0L,
+pp[6] = {
+ 1.122751350964552113068262337278335028553E6L,
+ -2.808533301997696164408397079650699163276E6L,
+ -3.314325479115357458197119660818768924100E5L,
+ -6.848684465326256109712135497895525446398E4L,
+ -2.657817695110739185591505062971929859314E3L,
+ -1.655310302737837556654146291646499062882E2L,
+},
+qq[6] = {
+ 8.745588372054466262548908189000448124232E6L,
+ 3.746038264792471129367533128637019611485E6L,
+ 7.066358783162407559861156173539693900031E5L,
+ 7.448928604824620999413120955705448117056E4L,
+ 4.511583986730994111992253980546131408924E3L,
+ 1.368902937933296323345610240009071254014E2L,
+ /* 1.000000000000000000000000000000000000000E0 */
+},
+
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
+ -0.15625 <= x <= +.25
+ Peak relative error 8.5e-22 */
+pa[8] = {
+ -1.076952146179812072156734957705102256059E0L,
+ 1.884814957770385593365179835059971587220E2L,
+ -5.339153975012804282890066622962070115606E1L,
+ 4.435910679869176625928504532109635632618E1L,
+ 1.683219516032328828278557309642929135179E1L,
+ -2.360236618396952560064259585299045804293E0L,
+ 1.852230047861891953244413872297940938041E0L,
+ 9.394994446747752308256773044667843200719E-2L,
+},
+qa[7] = {
+ 4.559263722294508998149925774781887811255E2L,
+ 3.289248982200800575749795055149780689738E2L,
+ 2.846070965875643009598627918383314457912E2L,
+ 1.398715859064535039433275722017479994465E2L,
+ 6.060190733759793706299079050985358190726E1L,
+ 2.078695677795422351040502569964299664233E1L,
+ 4.641271134150895940966798357442234498546E0L,
+ /* 1.000000000000000000000000000000000000000E0 */
+},
+
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
+ 1/2.85711669921875 < 1/x < 1/1.25
+ Peak relative error 3.1e-21 */
+ra[] = {
+ 1.363566591833846324191000679620738857234E-1L,
+ 1.018203167219873573808450274314658434507E1L,
+ 1.862359362334248675526472871224778045594E2L,
+ 1.411622588180721285284945138667933330348E3L,
+ 5.088538459741511988784440103218342840478E3L,
+ 8.928251553922176506858267311750789273656E3L,
+ 7.264436000148052545243018622742770549982E3L,
+ 2.387492459664548651671894725748959751119E3L,
+ 2.220916652813908085449221282808458466556E2L,
+},
+sa[] = {
+ -1.382234625202480685182526402169222331847E1L,
+ -3.315638835627950255832519203687435946482E2L,
+ -2.949124863912936259747237164260785326692E3L,
+ -1.246622099070875940506391433635999693661E4L,
+ -2.673079795851665428695842853070996219632E4L,
+ -2.880269786660559337358397106518918220991E4L,
+ -1.450600228493968044773354186390390823713E4L,
+ -2.874539731125893533960680525192064277816E3L,
+ -1.402241261419067750237395034116942296027E2L,
+ /* 1.000000000000000000000000000000000000000E0 */
+},
+
+/*
+ * Coefficients for approximation to erfc in [1/.35,107]
+ */
+/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
+ 1/6.6666259765625 < 1/x < 1/2.85711669921875
+ Peak relative error 4.2e-22 */
+rb[] = {
+ -4.869587348270494309550558460786501252369E-5L,
+ -4.030199390527997378549161722412466959403E-3L,
+ -9.434425866377037610206443566288917589122E-2L,
+ -9.319032754357658601200655161585539404155E-1L,
+ -4.273788174307459947350256581445442062291E0L,
+ -8.842289940696150508373541814064198259278E0L,
+ -7.069215249419887403187988144752613025255E0L,
+ -1.401228723639514787920274427443330704764E0L,
+},
+sb[] = {
+ 4.936254964107175160157544545879293019085E-3L,
+ 1.583457624037795744377163924895349412015E-1L,
+ 1.850647991850328356622940552450636420484E0L,
+ 9.927611557279019463768050710008450625415E0L,
+ 2.531667257649436709617165336779212114570E1L,
+ 2.869752886406743386458304052862814690045E1L,
+ 1.182059497870819562441683560749192539345E1L,
+ /* 1.000000000000000000000000000000000000000E0 */
+},
+/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
+ 1/107 <= 1/x <= 1/6.6666259765625
+ Peak relative error 1.1e-21 */
+rc[] = {
+ -8.299617545269701963973537248996670806850E-5L,
+ -6.243845685115818513578933902532056244108E-3L,
+ -1.141667210620380223113693474478394397230E-1L,
+ -7.521343797212024245375240432734425789409E-1L,
+ -1.765321928311155824664963633786967602934E0L,
+ -1.029403473103215800456761180695263439188E0L,
+},
+sc[] = {
+ 8.413244363014929493035952542677768808601E-3L,
+ 2.065114333816877479753334599639158060979E-1L,
+ 1.639064941530797583766364412782135680148E0L,
+ 4.936788463787115555582319302981666347450E0L,
+ 5.005177727208955487404729933261347679090E0L,
+ /* 1.000000000000000000000000000000000000000E0 */
+};
+
+static long double erfc1(long double x)
+{
+ long double s,P,Q;
+
+ s = fabsl(x) - 1;
+ P = pa[0] + s * (pa[1] + s * (pa[2] +
+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
+ Q = qa[0] + s * (qa[1] + s * (qa[2] +
+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
+ return 1 - erx - P / Q;
+}
+
+static long double erfc2(uint32_t ix, long double x)
+{
+ union ldshape u;
+ long double s,z,R,S;
+
+ if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */
+ return erfc1(x);
+
+ x = fabsl(x);
+ s = 1 / (x * x);
+ if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */
+ R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
+ s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
+ S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
+ s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
+ } else if (ix < 0x4001d555) { /* 2.857 <= |x| < 6.6666259765625 */
+ R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
+ s * (rb[5] + s * (rb[6] + s * rb[7]))))));
+ S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
+ s * (sb[5] + s * (sb[6] + s))))));
+ } else { /* 6.666 <= |x| < 107 (erfc only) */
+ R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
+ s * (rc[4] + s * rc[5]))));
+ S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
+ s * (sc[4] + s))));
+ }
+ u.f = x;
+ u.i.m &= -1ULL << 40;
+ z = u.f;
+ return expl(-z*z - 0.5625) * expl((z - x) * (z + x) + R / S) / x;
+}
+
+long double erfl(long double x)
+{
+ long double r, s, z, y;
+ union ldshape u = {x};
+ uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
+ int sign = u.i.se >> 15;
+
+ if (ix >= 0x7fff0000)
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1 - 2*sign + 1/x;
+ if (ix < 0x3ffed800) { /* |x| < 0.84375 */
+ if (ix < 0x3fde8000) { /* |x| < 2**-33 */
+ return 0.125 * (8 * x + efx8 * x); /* avoid underflow */
+ }
+ z = x * x;
+ r = pp[0] + z * (pp[1] +
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
+ s = qq[0] + z * (qq[1] +
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
+ y = r / s;
+ return x + x * y;
+ }
+ if (ix < 0x4001d555) /* |x| < 6.6666259765625 */
+ y = 1 - erfc2(ix,x);
+ else
+ y = 1 - 0x1p-16382L;
+ return sign ? -y : y;
+}
+
+long double erfcl(long double x)
+{
+ long double r, s, z, y;
+ union ldshape u = {x};
+ uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
+ int sign = u.i.se >> 15;
+
+ if (ix >= 0x7fff0000)
+ /* erfc(nan) = nan, erfc(+-inf) = 0,2 */
+ return 2*sign + 1/x;
+ if (ix < 0x3ffed800) { /* |x| < 0.84375 */
+ if (ix < 0x3fbe0000) /* |x| < 2**-65 */
+ return 1.0 - x;
+ z = x * x;
+ r = pp[0] + z * (pp[1] +
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
+ s = qq[0] + z * (qq[1] +
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
+ y = r / s;
+ if (ix < 0x3ffd8000) /* x < 1/4 */
+ return 1.0 - (x + x * y);
+ return 0.5 - (x - 0.5 + x * y);
+ }
+ if (ix < 0x4005d600) /* |x| < 107 */
+ return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
+ y = 0x1p-16382L;
+ return sign ? 2 - y : y*y;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double erfl(long double x)
+{
+ return erf(x);
+}
+long double erfcl(long double x)
+{
+ return erfc(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp.c b/lib/mlibc/options/ansi/musl-generic-math/exp.c
new file mode 100644
index 0000000..9ea672f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp.c
@@ -0,0 +1,134 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remez algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + ----------
+ * R(r) - r
+ * r*c(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - c(r)
+ * where
+ * 2 4 10
+ * c(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 709.782712893383973096 then exp(x) overflows
+ * if x < -745.133219101941108420 then exp(x) underflows
+ */
+
+#include "libm.h"
+
+static const double
+half[2] = {0.5,-0.5},
+ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+double exp(double x)
+{
+ double_t hi, lo, c, xx, y;
+ int k, sign;
+ uint32_t hx;
+
+ GET_HIGH_WORD(hx, x);
+ sign = hx>>31;
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if (hx >= 0x4086232b) { /* if |x| >= 708.39... */
+ if (isnan(x))
+ return x;
+ if (x > 709.782712893383973096) {
+ /* overflow if x!=inf */
+ x *= 0x1p1023;
+ return x;
+ }
+ if (x < -708.39641853226410622) {
+ /* underflow if x!=-inf */
+ FORCE_EVAL((float)(-0x1p-149/x));
+ if (x < -745.13321910194110842)
+ return 0;
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
+ k = (int)(invln2*x + half[sign]);
+ else
+ k = 1 - sign - sign;
+ hi = x - k*ln2hi; /* k*ln2hi is exact here */
+ lo = k*ln2lo;
+ x = hi - lo;
+ } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
+ k = 0;
+ hi = x;
+ lo = 0;
+ } else {
+ /* inexact if x!=0 */
+ FORCE_EVAL(0x1p1023 + x);
+ return 1 + x;
+ }
+
+ /* x is now in primary range */
+ xx = x*x;
+ c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
+ y = 1 + (x*c/(2-c) - lo + hi);
+ if (k == 0)
+ return y;
+ return scalbn(y, k);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp10.c b/lib/mlibc/options/ansi/musl-generic-math/exp10.c
new file mode 100644
index 0000000..47b4dc7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp10.c
@@ -0,0 +1,26 @@
+#define _GNU_SOURCE
+#include <math.h>
+#include <stdint.h>
+#include "weak_alias.h"
+//#include "libc.h"
+
+double exp10(double x)
+{
+ static const double p10[] = {
+ 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
+ 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15
+ };
+ double n, y = modf(x, &n);
+ union {double f; uint64_t i;} u = {n};
+ /* fabs(n) < 16 without raising invalid on nan */
+ if ((u.i>>52 & 0x7ff) < 0x3ff+4) {
+ if (!y) return p10[(int)n+15];
+ y = exp2(3.32192809488736234787031942948939 * y);
+ return y * p10[(int)n+15];
+ }
+ return pow(10.0, x);
+}
+
+weak_alias(exp10, pow10);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp10f.c b/lib/mlibc/options/ansi/musl-generic-math/exp10f.c
new file mode 100644
index 0000000..74f8909
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp10f.c
@@ -0,0 +1,24 @@
+#define _GNU_SOURCE
+#include <math.h>
+#include <stdint.h>
+#include "weak_alias.h"
+//#include "libc.h"
+
+float exp10f(float x)
+{
+ static const float p10[] = {
+ 1e-7f, 1e-6f, 1e-5f, 1e-4f, 1e-3f, 1e-2f, 1e-1f,
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7
+ };
+ float n, y = modff(x, &n);
+ union {float f; uint32_t i;} u = {n};
+ /* fabsf(n) < 8 without raising invalid on nan */
+ if ((u.i>>23 & 0xff) < 0x7f+3) {
+ if (!y) return p10[(int)n+7];
+ y = exp2f(3.32192809488736234787031942948939f * y);
+ return y * p10[(int)n+7];
+ }
+ return exp2(3.32192809488736234787031942948939 * x);
+}
+
+weak_alias(exp10f, pow10f);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp10l.c b/lib/mlibc/options/ansi/musl-generic-math/exp10l.c
new file mode 100644
index 0000000..f18e554
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp10l.c
@@ -0,0 +1,34 @@
+#define _GNU_SOURCE
+#include <float.h>
+#include <math.h>
+//#include "libc.h"
+#include "libm.h"
+#include "weak_alias.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double exp10l(long double x)
+{
+ return exp10(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double exp10l(long double x)
+{
+ static const long double p10[] = {
+ 1e-15L, 1e-14L, 1e-13L, 1e-12L, 1e-11L, 1e-10L,
+ 1e-9L, 1e-8L, 1e-7L, 1e-6L, 1e-5L, 1e-4L, 1e-3L, 1e-2L, 1e-1L,
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15
+ };
+ long double n, y = modfl(x, &n);
+ union ldshape u = {n};
+ /* fabsl(n) < 16 without raising invalid on nan */
+ if ((u.i.se & 0x7fff) < 0x3fff+4) {
+ if (!y) return p10[(int)n+15];
+ y = exp2l(3.32192809488736234787031942948939L * y);
+ return y * p10[(int)n+15];
+ }
+ return powl(10.0, x);
+}
+#endif
+
+weak_alias(exp10l, pow10l);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp2.c b/lib/mlibc/options/ansi/musl-generic-math/exp2.c
new file mode 100644
index 0000000..e14adba
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp2.c
@@ -0,0 +1,375 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_exp2.c */
+/*-
+ * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "libm.h"
+
+#define TBLSIZE 256
+
+static const double
+redux = 0x1.8p52 / TBLSIZE,
+P1 = 0x1.62e42fefa39efp-1,
+P2 = 0x1.ebfbdff82c575p-3,
+P3 = 0x1.c6b08d704a0a6p-5,
+P4 = 0x1.3b2ab88f70400p-7,
+P5 = 0x1.5d88003875c74p-10;
+
+static const double tbl[TBLSIZE * 2] = {
+/* exp2(z + eps) eps */
+ 0x1.6a09e667f3d5dp-1, 0x1.9880p-44,
+ 0x1.6b052fa751744p-1, 0x1.8000p-50,
+ 0x1.6c012750bd9fep-1, -0x1.8780p-45,
+ 0x1.6cfdcddd476bfp-1, 0x1.ec00p-46,
+ 0x1.6dfb23c651a29p-1, -0x1.8000p-50,
+ 0x1.6ef9298593ae3p-1, -0x1.c000p-52,
+ 0x1.6ff7df9519386p-1, -0x1.fd80p-45,
+ 0x1.70f7466f42da3p-1, -0x1.c880p-45,
+ 0x1.71f75e8ec5fc3p-1, 0x1.3c00p-46,
+ 0x1.72f8286eacf05p-1, -0x1.8300p-44,
+ 0x1.73f9a48a58152p-1, -0x1.0c00p-47,
+ 0x1.74fbd35d7ccfcp-1, 0x1.f880p-45,
+ 0x1.75feb564267f1p-1, 0x1.3e00p-47,
+ 0x1.77024b1ab6d48p-1, -0x1.7d00p-45,
+ 0x1.780694fde5d38p-1, -0x1.d000p-50,
+ 0x1.790b938ac1d00p-1, 0x1.3000p-49,
+ 0x1.7a11473eb0178p-1, -0x1.d000p-49,
+ 0x1.7b17b0976d060p-1, 0x1.0400p-45,
+ 0x1.7c1ed0130c133p-1, 0x1.0000p-53,
+ 0x1.7d26a62ff8636p-1, -0x1.6900p-45,
+ 0x1.7e2f336cf4e3bp-1, -0x1.2e00p-47,
+ 0x1.7f3878491c3e8p-1, -0x1.4580p-45,
+ 0x1.80427543e1b4ep-1, 0x1.3000p-44,
+ 0x1.814d2add1071ap-1, 0x1.f000p-47,
+ 0x1.82589994ccd7ep-1, -0x1.1c00p-45,
+ 0x1.8364c1eb942d0p-1, 0x1.9d00p-45,
+ 0x1.8471a4623cab5p-1, 0x1.7100p-43,
+ 0x1.857f4179f5bbcp-1, 0x1.2600p-45,
+ 0x1.868d99b4491afp-1, -0x1.2c40p-44,
+ 0x1.879cad931a395p-1, -0x1.3000p-45,
+ 0x1.88ac7d98a65b8p-1, -0x1.a800p-45,
+ 0x1.89bd0a4785800p-1, -0x1.d000p-49,
+ 0x1.8ace5422aa223p-1, 0x1.3280p-44,
+ 0x1.8be05bad619fap-1, 0x1.2b40p-43,
+ 0x1.8cf3216b54383p-1, -0x1.ed00p-45,
+ 0x1.8e06a5e08664cp-1, -0x1.0500p-45,
+ 0x1.8f1ae99157807p-1, 0x1.8280p-45,
+ 0x1.902fed0282c0ep-1, -0x1.cb00p-46,
+ 0x1.9145b0b91ff96p-1, -0x1.5e00p-47,
+ 0x1.925c353aa2ff9p-1, 0x1.5400p-48,
+ 0x1.93737b0cdc64ap-1, 0x1.7200p-46,
+ 0x1.948b82b5f98aep-1, -0x1.9000p-47,
+ 0x1.95a44cbc852cbp-1, 0x1.5680p-45,
+ 0x1.96bdd9a766f21p-1, -0x1.6d00p-44,
+ 0x1.97d829fde4e2ap-1, -0x1.1000p-47,
+ 0x1.98f33e47a23a3p-1, 0x1.d000p-45,
+ 0x1.9a0f170ca0604p-1, -0x1.8a40p-44,
+ 0x1.9b2bb4d53ff89p-1, 0x1.55c0p-44,
+ 0x1.9c49182a3f15bp-1, 0x1.6b80p-45,
+ 0x1.9d674194bb8c5p-1, -0x1.c000p-49,
+ 0x1.9e86319e3238ep-1, 0x1.7d00p-46,
+ 0x1.9fa5e8d07f302p-1, 0x1.6400p-46,
+ 0x1.a0c667b5de54dp-1, -0x1.5000p-48,
+ 0x1.a1e7aed8eb8f6p-1, 0x1.9e00p-47,
+ 0x1.a309bec4a2e27p-1, 0x1.ad80p-45,
+ 0x1.a42c980460a5dp-1, -0x1.af00p-46,
+ 0x1.a5503b23e259bp-1, 0x1.b600p-47,
+ 0x1.a674a8af46213p-1, 0x1.8880p-44,
+ 0x1.a799e1330b3a7p-1, 0x1.1200p-46,
+ 0x1.a8bfe53c12e8dp-1, 0x1.6c00p-47,
+ 0x1.a9e6b5579fcd2p-1, -0x1.9b80p-45,
+ 0x1.ab0e521356fb8p-1, 0x1.b700p-45,
+ 0x1.ac36bbfd3f381p-1, 0x1.9000p-50,
+ 0x1.ad5ff3a3c2780p-1, 0x1.4000p-49,
+ 0x1.ae89f995ad2a3p-1, -0x1.c900p-45,
+ 0x1.afb4ce622f367p-1, 0x1.6500p-46,
+ 0x1.b0e07298db790p-1, 0x1.fd40p-45,
+ 0x1.b20ce6c9a89a9p-1, 0x1.2700p-46,
+ 0x1.b33a2b84f1a4bp-1, 0x1.d470p-43,
+ 0x1.b468415b747e7p-1, -0x1.8380p-44,
+ 0x1.b59728de5593ap-1, 0x1.8000p-54,
+ 0x1.b6c6e29f1c56ap-1, 0x1.ad00p-47,
+ 0x1.b7f76f2fb5e50p-1, 0x1.e800p-50,
+ 0x1.b928cf22749b2p-1, -0x1.4c00p-47,
+ 0x1.ba5b030a10603p-1, -0x1.d700p-47,
+ 0x1.bb8e0b79a6f66p-1, 0x1.d900p-47,
+ 0x1.bcc1e904bc1ffp-1, 0x1.2a00p-47,
+ 0x1.bdf69c3f3a16fp-1, -0x1.f780p-46,
+ 0x1.bf2c25bd71db8p-1, -0x1.0a00p-46,
+ 0x1.c06286141b2e9p-1, -0x1.1400p-46,
+ 0x1.c199bdd8552e0p-1, 0x1.be00p-47,
+ 0x1.c2d1cd9fa64eep-1, -0x1.9400p-47,
+ 0x1.c40ab5fffd02fp-1, -0x1.ed00p-47,
+ 0x1.c544778fafd15p-1, 0x1.9660p-44,
+ 0x1.c67f12e57d0cbp-1, -0x1.a100p-46,
+ 0x1.c7ba88988c1b6p-1, -0x1.8458p-42,
+ 0x1.c8f6d9406e733p-1, -0x1.a480p-46,
+ 0x1.ca3405751c4dfp-1, 0x1.b000p-51,
+ 0x1.cb720dcef9094p-1, 0x1.1400p-47,
+ 0x1.ccb0f2e6d1689p-1, 0x1.0200p-48,
+ 0x1.cdf0b555dc412p-1, 0x1.3600p-48,
+ 0x1.cf3155b5bab3bp-1, -0x1.6900p-47,
+ 0x1.d072d4a0789bcp-1, 0x1.9a00p-47,
+ 0x1.d1b532b08c8fap-1, -0x1.5e00p-46,
+ 0x1.d2f87080d8a85p-1, 0x1.d280p-46,
+ 0x1.d43c8eacaa203p-1, 0x1.1a00p-47,
+ 0x1.d5818dcfba491p-1, 0x1.f000p-50,
+ 0x1.d6c76e862e6a1p-1, -0x1.3a00p-47,
+ 0x1.d80e316c9834ep-1, -0x1.cd80p-47,
+ 0x1.d955d71ff6090p-1, 0x1.4c00p-48,
+ 0x1.da9e603db32aep-1, 0x1.f900p-48,
+ 0x1.dbe7cd63a8325p-1, 0x1.9800p-49,
+ 0x1.dd321f301b445p-1, -0x1.5200p-48,
+ 0x1.de7d5641c05bfp-1, -0x1.d700p-46,
+ 0x1.dfc97337b9aecp-1, -0x1.6140p-46,
+ 0x1.e11676b197d5ep-1, 0x1.b480p-47,
+ 0x1.e264614f5a3e7p-1, 0x1.0ce0p-43,
+ 0x1.e3b333b16ee5cp-1, 0x1.c680p-47,
+ 0x1.e502ee78b3fb4p-1, -0x1.9300p-47,
+ 0x1.e653924676d68p-1, -0x1.5000p-49,
+ 0x1.e7a51fbc74c44p-1, -0x1.7f80p-47,
+ 0x1.e8f7977cdb726p-1, -0x1.3700p-48,
+ 0x1.ea4afa2a490e8p-1, 0x1.5d00p-49,
+ 0x1.eb9f4867ccae4p-1, 0x1.61a0p-46,
+ 0x1.ecf482d8e680dp-1, 0x1.5500p-48,
+ 0x1.ee4aaa2188514p-1, 0x1.6400p-51,
+ 0x1.efa1bee615a13p-1, -0x1.e800p-49,
+ 0x1.f0f9c1cb64106p-1, -0x1.a880p-48,
+ 0x1.f252b376bb963p-1, -0x1.c900p-45,
+ 0x1.f3ac948dd7275p-1, 0x1.a000p-53,
+ 0x1.f50765b6e4524p-1, -0x1.4f00p-48,
+ 0x1.f6632798844fdp-1, 0x1.a800p-51,
+ 0x1.f7bfdad9cbe38p-1, 0x1.abc0p-48,
+ 0x1.f91d802243c82p-1, -0x1.4600p-50,
+ 0x1.fa7c1819e908ep-1, -0x1.b0c0p-47,
+ 0x1.fbdba3692d511p-1, -0x1.0e00p-51,
+ 0x1.fd3c22b8f7194p-1, -0x1.0de8p-46,
+ 0x1.fe9d96b2a23eep-1, 0x1.e430p-49,
+ 0x1.0000000000000p+0, 0x0.0000p+0,
+ 0x1.00b1afa5abcbep+0, -0x1.3400p-52,
+ 0x1.0163da9fb3303p+0, -0x1.2170p-46,
+ 0x1.02168143b0282p+0, 0x1.a400p-52,
+ 0x1.02c9a3e77806cp+0, 0x1.f980p-49,
+ 0x1.037d42e11bbcap+0, -0x1.7400p-51,
+ 0x1.04315e86e7f89p+0, 0x1.8300p-50,
+ 0x1.04e5f72f65467p+0, -0x1.a3f0p-46,
+ 0x1.059b0d315855ap+0, -0x1.2840p-47,
+ 0x1.0650a0e3c1f95p+0, 0x1.1600p-48,
+ 0x1.0706b29ddf71ap+0, 0x1.5240p-46,
+ 0x1.07bd42b72a82dp+0, -0x1.9a00p-49,
+ 0x1.0874518759bd0p+0, 0x1.6400p-49,
+ 0x1.092bdf66607c8p+0, -0x1.0780p-47,
+ 0x1.09e3ecac6f383p+0, -0x1.8000p-54,
+ 0x1.0a9c79b1f3930p+0, 0x1.fa00p-48,
+ 0x1.0b5586cf988fcp+0, -0x1.ac80p-48,
+ 0x1.0c0f145e46c8ap+0, 0x1.9c00p-50,
+ 0x1.0cc922b724816p+0, 0x1.5200p-47,
+ 0x1.0d83b23395dd8p+0, -0x1.ad00p-48,
+ 0x1.0e3ec32d3d1f3p+0, 0x1.bac0p-46,
+ 0x1.0efa55fdfa9a6p+0, -0x1.4e80p-47,
+ 0x1.0fb66affed2f0p+0, -0x1.d300p-47,
+ 0x1.1073028d7234bp+0, 0x1.1500p-48,
+ 0x1.11301d0125b5bp+0, 0x1.c000p-49,
+ 0x1.11edbab5e2af9p+0, 0x1.6bc0p-46,
+ 0x1.12abdc06c31d5p+0, 0x1.8400p-49,
+ 0x1.136a814f2047dp+0, -0x1.ed00p-47,
+ 0x1.1429aaea92de9p+0, 0x1.8e00p-49,
+ 0x1.14e95934f3138p+0, 0x1.b400p-49,
+ 0x1.15a98c8a58e71p+0, 0x1.5300p-47,
+ 0x1.166a45471c3dfp+0, 0x1.3380p-47,
+ 0x1.172b83c7d5211p+0, 0x1.8d40p-45,
+ 0x1.17ed48695bb9fp+0, -0x1.5d00p-47,
+ 0x1.18af9388c8d93p+0, -0x1.c880p-46,
+ 0x1.1972658375d66p+0, 0x1.1f00p-46,
+ 0x1.1a35beb6fcba7p+0, 0x1.0480p-46,
+ 0x1.1af99f81387e3p+0, -0x1.7390p-43,
+ 0x1.1bbe084045d54p+0, 0x1.4e40p-45,
+ 0x1.1c82f95281c43p+0, -0x1.a200p-47,
+ 0x1.1d4873168b9b2p+0, 0x1.3800p-49,
+ 0x1.1e0e75eb44031p+0, 0x1.ac00p-49,
+ 0x1.1ed5022fcd938p+0, 0x1.1900p-47,
+ 0x1.1f9c18438cdf7p+0, -0x1.b780p-46,
+ 0x1.2063b88628d8fp+0, 0x1.d940p-45,
+ 0x1.212be3578a81ep+0, 0x1.8000p-50,
+ 0x1.21f49917ddd41p+0, 0x1.b340p-45,
+ 0x1.22bdda2791323p+0, 0x1.9f80p-46,
+ 0x1.2387a6e7561e7p+0, -0x1.9c80p-46,
+ 0x1.2451ffb821427p+0, 0x1.2300p-47,
+ 0x1.251ce4fb2a602p+0, -0x1.3480p-46,
+ 0x1.25e85711eceb0p+0, 0x1.2700p-46,
+ 0x1.26b4565e27d16p+0, 0x1.1d00p-46,
+ 0x1.2780e341de00fp+0, 0x1.1ee0p-44,
+ 0x1.284dfe1f5633ep+0, -0x1.4c00p-46,
+ 0x1.291ba7591bb30p+0, -0x1.3d80p-46,
+ 0x1.29e9df51fdf09p+0, 0x1.8b00p-47,
+ 0x1.2ab8a66d10e9bp+0, -0x1.27c0p-45,
+ 0x1.2b87fd0dada3ap+0, 0x1.a340p-45,
+ 0x1.2c57e39771af9p+0, -0x1.0800p-46,
+ 0x1.2d285a6e402d9p+0, -0x1.ed00p-47,
+ 0x1.2df961f641579p+0, -0x1.4200p-48,
+ 0x1.2ecafa93e2ecfp+0, -0x1.4980p-45,
+ 0x1.2f9d24abd8822p+0, -0x1.6300p-46,
+ 0x1.306fe0a31b625p+0, -0x1.2360p-44,
+ 0x1.31432edeea50bp+0, -0x1.0df8p-40,
+ 0x1.32170fc4cd7b8p+0, -0x1.2480p-45,
+ 0x1.32eb83ba8e9a2p+0, -0x1.5980p-45,
+ 0x1.33c08b2641766p+0, 0x1.ed00p-46,
+ 0x1.3496266e3fa27p+0, -0x1.c000p-50,
+ 0x1.356c55f929f0fp+0, -0x1.0d80p-44,
+ 0x1.36431a2de88b9p+0, 0x1.2c80p-45,
+ 0x1.371a7373aaa39p+0, 0x1.0600p-45,
+ 0x1.37f26231e74fep+0, -0x1.6600p-46,
+ 0x1.38cae6d05d838p+0, -0x1.ae00p-47,
+ 0x1.39a401b713ec3p+0, -0x1.4720p-43,
+ 0x1.3a7db34e5a020p+0, 0x1.8200p-47,
+ 0x1.3b57fbfec6e95p+0, 0x1.e800p-44,
+ 0x1.3c32dc313a8f2p+0, 0x1.f800p-49,
+ 0x1.3d0e544ede122p+0, -0x1.7a00p-46,
+ 0x1.3dea64c1234bbp+0, 0x1.6300p-45,
+ 0x1.3ec70df1c4eccp+0, -0x1.8a60p-43,
+ 0x1.3fa4504ac7e8cp+0, -0x1.cdc0p-44,
+ 0x1.40822c367a0bbp+0, 0x1.5b80p-45,
+ 0x1.4160a21f72e95p+0, 0x1.ec00p-46,
+ 0x1.423fb27094646p+0, -0x1.3600p-46,
+ 0x1.431f5d950a920p+0, 0x1.3980p-45,
+ 0x1.43ffa3f84b9ebp+0, 0x1.a000p-48,
+ 0x1.44e0860618919p+0, -0x1.6c00p-48,
+ 0x1.45c2042a7d201p+0, -0x1.bc00p-47,
+ 0x1.46a41ed1d0016p+0, -0x1.2800p-46,
+ 0x1.4786d668b3326p+0, 0x1.0e00p-44,
+ 0x1.486a2b5c13c00p+0, -0x1.d400p-45,
+ 0x1.494e1e192af04p+0, 0x1.c200p-47,
+ 0x1.4a32af0d7d372p+0, -0x1.e500p-46,
+ 0x1.4b17dea6db801p+0, 0x1.7800p-47,
+ 0x1.4bfdad53629e1p+0, -0x1.3800p-46,
+ 0x1.4ce41b817c132p+0, 0x1.0800p-47,
+ 0x1.4dcb299fddddbp+0, 0x1.c700p-45,
+ 0x1.4eb2d81d8ab96p+0, -0x1.ce00p-46,
+ 0x1.4f9b2769d2d02p+0, 0x1.9200p-46,
+ 0x1.508417f4531c1p+0, -0x1.8c00p-47,
+ 0x1.516daa2cf662ap+0, -0x1.a000p-48,
+ 0x1.5257de83f51eap+0, 0x1.a080p-43,
+ 0x1.5342b569d4edap+0, -0x1.6d80p-45,
+ 0x1.542e2f4f6ac1ap+0, -0x1.2440p-44,
+ 0x1.551a4ca5d94dbp+0, 0x1.83c0p-43,
+ 0x1.56070dde9116bp+0, 0x1.4b00p-45,
+ 0x1.56f4736b529dep+0, 0x1.15a0p-43,
+ 0x1.57e27dbe2c40ep+0, -0x1.9e00p-45,
+ 0x1.58d12d497c76fp+0, -0x1.3080p-45,
+ 0x1.59c0827ff0b4cp+0, 0x1.dec0p-43,
+ 0x1.5ab07dd485427p+0, -0x1.4000p-51,
+ 0x1.5ba11fba87af4p+0, 0x1.0080p-44,
+ 0x1.5c9268a59460bp+0, -0x1.6c80p-45,
+ 0x1.5d84590998e3fp+0, 0x1.69a0p-43,
+ 0x1.5e76f15ad20e1p+0, -0x1.b400p-46,
+ 0x1.5f6a320dcebcap+0, 0x1.7700p-46,
+ 0x1.605e1b976dcb8p+0, 0x1.6f80p-45,
+ 0x1.6152ae6cdf715p+0, 0x1.1000p-47,
+ 0x1.6247eb03a5531p+0, -0x1.5d00p-46,
+ 0x1.633dd1d1929b5p+0, -0x1.2d00p-46,
+ 0x1.6434634ccc313p+0, -0x1.a800p-49,
+ 0x1.652b9febc8efap+0, -0x1.8600p-45,
+ 0x1.6623882553397p+0, 0x1.1fe0p-40,
+ 0x1.671c1c708328ep+0, -0x1.7200p-44,
+ 0x1.68155d44ca97ep+0, 0x1.6800p-49,
+ 0x1.690f4b19e9471p+0, -0x1.9780p-45,
+};
+
+/*
+ * exp2(x): compute the base 2 exponential of x
+ *
+ * Accuracy: Peak error < 0.503 ulp for normalized results.
+ *
+ * Method: (accurate tables)
+ *
+ * Reduce x:
+ * x = k + y, for integer k and |y| <= 1/2.
+ * Thus we have exp2(x) = 2**k * exp2(y).
+ *
+ * Reduce y:
+ * y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
+ * Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
+ * with |z - eps[i]| <= 2**-9 + 2**-39 for the table used.
+ *
+ * We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
+ * a degree-5 minimax polynomial with maximum error under 1.3 * 2**-61.
+ * The values in exp2t[] and eps[] are chosen such that
+ * exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
+ * that exp2t[i] is accurate to 2**-64.
+ *
+ * Note that the range of i is +-TBLSIZE/2, so we actually index the tables
+ * by i0 = i + TBLSIZE/2. For cache efficiency, exp2t[] and eps[] are
+ * virtual tables, interleaved in the real table tbl[].
+ *
+ * This method is due to Gal, with many details due to Gal and Bachelis:
+ *
+ * Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
+ * for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
+ */
+double exp2(double x)
+{
+ double_t r, t, z;
+ uint32_t ix, i0;
+ union {double f; uint64_t i;} u = {x};
+ union {uint32_t u; int32_t i;} k;
+
+ /* Filter out exceptional cases. */
+ ix = u.i>>32 & 0x7fffffff;
+ if (ix >= 0x408ff000) { /* |x| >= 1022 or nan */
+ if (ix >= 0x40900000 && u.i>>63 == 0) { /* x >= 1024 or nan */
+ /* overflow */
+ x *= 0x1p1023;
+ return x;
+ }
+ if (ix >= 0x7ff00000) /* -inf or -nan */
+ return -1/x;
+ if (u.i>>63) { /* x <= -1022 */
+ /* underflow */
+ if (x <= -1075 || x - 0x1p52 + 0x1p52 != x)
+ FORCE_EVAL((float)(-0x1p-149/x));
+ if (x <= -1075)
+ return 0;
+ }
+ } else if (ix < 0x3c900000) { /* |x| < 0x1p-54 */
+ return 1.0 + x;
+ }
+
+ /* Reduce x, computing z, i0, and k. */
+ u.f = x + redux;
+ i0 = u.i;
+ i0 += TBLSIZE / 2;
+ k.u = i0 / TBLSIZE * TBLSIZE;
+ k.i /= TBLSIZE;
+ i0 %= TBLSIZE;
+ u.f -= redux;
+ z = x - u.f;
+
+ /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+ t = tbl[2*i0]; /* exp2t[i0] */
+ z -= tbl[2*i0 + 1]; /* eps[i0] */
+ r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
+
+ return scalbn(r, k.i);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp2f.c b/lib/mlibc/options/ansi/musl-generic-math/exp2f.c
new file mode 100644
index 0000000..296b634
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp2f.c
@@ -0,0 +1,126 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c */
+/*-
+ * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "libm.h"
+
+#define TBLSIZE 16
+
+static const float
+redux = 0x1.8p23f / TBLSIZE,
+P1 = 0x1.62e430p-1f,
+P2 = 0x1.ebfbe0p-3f,
+P3 = 0x1.c6b348p-5f,
+P4 = 0x1.3b2c9cp-7f;
+
+static const double exp2ft[TBLSIZE] = {
+ 0x1.6a09e667f3bcdp-1,
+ 0x1.7a11473eb0187p-1,
+ 0x1.8ace5422aa0dbp-1,
+ 0x1.9c49182a3f090p-1,
+ 0x1.ae89f995ad3adp-1,
+ 0x1.c199bdd85529cp-1,
+ 0x1.d5818dcfba487p-1,
+ 0x1.ea4afa2a490dap-1,
+ 0x1.0000000000000p+0,
+ 0x1.0b5586cf9890fp+0,
+ 0x1.172b83c7d517bp+0,
+ 0x1.2387a6e756238p+0,
+ 0x1.306fe0a31b715p+0,
+ 0x1.3dea64c123422p+0,
+ 0x1.4bfdad5362a27p+0,
+ 0x1.5ab07dd485429p+0,
+};
+
+/*
+ * exp2f(x): compute the base 2 exponential of x
+ *
+ * Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
+ *
+ * Method: (equally-spaced tables)
+ *
+ * Reduce x:
+ * x = k + y, for integer k and |y| <= 1/2.
+ * Thus we have exp2f(x) = 2**k * exp2(y).
+ *
+ * Reduce y:
+ * y = i/TBLSIZE + z for integer i near y * TBLSIZE.
+ * Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
+ * with |z| <= 2**-(TBLSIZE+1).
+ *
+ * We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
+ * degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
+ * Using double precision for everything except the reduction makes
+ * roundoff error insignificant and simplifies the scaling step.
+ *
+ * This method is due to Tang, but I do not use his suggested parameters:
+ *
+ * Tang, P. Table-driven Implementation of the Exponential Function
+ * in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
+ */
+float exp2f(float x)
+{
+ double_t t, r, z;
+ union {float f; uint32_t i;} u = {x};
+ union {double f; uint64_t i;} uk;
+ uint32_t ix, i0, k;
+
+ /* Filter out exceptional cases. */
+ ix = u.i & 0x7fffffff;
+ if (ix > 0x42fc0000) { /* |x| > 126 */
+ if (ix > 0x7f800000) /* NaN */
+ return x;
+ if (u.i >= 0x43000000 && u.i < 0x80000000) { /* x >= 128 */
+ x *= 0x1p127f;
+ return x;
+ }
+ if (u.i >= 0x80000000) { /* x < -126 */
+ if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
+ FORCE_EVAL(-0x1p-149f/x);
+ if (u.i >= 0xc3160000) /* x <= -150 */
+ return 0;
+ }
+ } else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */
+ return 1.0f + x;
+ }
+
+ /* Reduce x, computing z, i0, and k. */
+ u.f = x + redux;
+ i0 = u.i;
+ i0 += TBLSIZE / 2;
+ k = i0 / TBLSIZE;
+ uk.i = (uint64_t)(0x3ff + k)<<52;
+ i0 &= TBLSIZE - 1;
+ u.f -= redux;
+ z = x - u.f;
+ /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
+ r = exp2ft[i0];
+ t = r * z;
+ r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);
+
+ /* Scale by 2**k */
+ return r * uk.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp2l.c b/lib/mlibc/options/ansi/musl-generic-math/exp2l.c
new file mode 100644
index 0000000..3565c1e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp2l.c
@@ -0,0 +1,619 @@
+/* origin: FreeBSD /usr/src/lib/msun/ld80/s_exp2l.c and /usr/src/lib/msun/ld128/s_exp2l.c */
+/*-
+ * Copyright (c) 2005-2008 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double exp2l(long double x)
+{
+ return exp2(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+#define TBLBITS 7
+#define TBLSIZE (1 << TBLBITS)
+
+static const double
+redux = 0x1.8p63 / TBLSIZE,
+P1 = 0x1.62e42fefa39efp-1,
+P2 = 0x1.ebfbdff82c58fp-3,
+P3 = 0x1.c6b08d7049fap-5,
+P4 = 0x1.3b2ab6fba4da5p-7,
+P5 = 0x1.5d8804780a736p-10,
+P6 = 0x1.430918835e33dp-13;
+
+static const double tbl[TBLSIZE * 2] = {
+ 0x1.6a09e667f3bcdp-1, -0x1.bdd3413b2648p-55,
+ 0x1.6c012750bdabfp-1, -0x1.2895667ff0cp-57,
+ 0x1.6dfb23c651a2fp-1, -0x1.bbe3a683c88p-58,
+ 0x1.6ff7df9519484p-1, -0x1.83c0f25860fp-56,
+ 0x1.71f75e8ec5f74p-1, -0x1.16e4786887bp-56,
+ 0x1.73f9a48a58174p-1, -0x1.0a8d96c65d5p-55,
+ 0x1.75feb564267c9p-1, -0x1.0245957316ep-55,
+ 0x1.780694fde5d3fp-1, 0x1.866b80a0216p-55,
+ 0x1.7a11473eb0187p-1, -0x1.41577ee0499p-56,
+ 0x1.7c1ed0130c132p-1, 0x1.f124cd1164ep-55,
+ 0x1.7e2f336cf4e62p-1, 0x1.05d02ba157ap-57,
+ 0x1.80427543e1a12p-1, -0x1.27c86626d97p-55,
+ 0x1.82589994cce13p-1, -0x1.d4c1dd41533p-55,
+ 0x1.8471a4623c7adp-1, -0x1.8d684a341cep-56,
+ 0x1.868d99b4492edp-1, -0x1.fc6f89bd4f68p-55,
+ 0x1.88ac7d98a6699p-1, 0x1.994c2f37cb5p-55,
+ 0x1.8ace5422aa0dbp-1, 0x1.6e9f156864bp-55,
+ 0x1.8cf3216b5448cp-1, -0x1.0d55e32e9e4p-57,
+ 0x1.8f1ae99157736p-1, 0x1.5cc13a2e397p-56,
+ 0x1.9145b0b91ffc6p-1, -0x1.dd6792e5825p-55,
+ 0x1.93737b0cdc5e5p-1, -0x1.75fc781b58p-58,
+ 0x1.95a44cbc8520fp-1, -0x1.64b7c96a5fp-57,
+ 0x1.97d829fde4e5p-1, -0x1.d185b7c1b86p-55,
+ 0x1.9a0f170ca07bap-1, -0x1.173bd91cee6p-55,
+ 0x1.9c49182a3f09p-1, 0x1.c7c46b071f2p-57,
+ 0x1.9e86319e32323p-1, 0x1.824ca78e64cp-57,
+ 0x1.a0c667b5de565p-1, -0x1.359495d1cd5p-55,
+ 0x1.a309bec4a2d33p-1, 0x1.6305c7ddc368p-55,
+ 0x1.a5503b23e255dp-1, -0x1.d2f6edb8d42p-55,
+ 0x1.a799e1330b358p-1, 0x1.bcb7ecac564p-55,
+ 0x1.a9e6b5579fdbfp-1, 0x1.0fac90ef7fdp-55,
+ 0x1.ac36bbfd3f37ap-1, -0x1.f9234cae76dp-56,
+ 0x1.ae89f995ad3adp-1, 0x1.7a1cd345dcc8p-55,
+ 0x1.b0e07298db666p-1, -0x1.bdef54c80e4p-55,
+ 0x1.b33a2b84f15fbp-1, -0x1.2805e3084d8p-58,
+ 0x1.b59728de5593ap-1, -0x1.c71dfbbba6ep-55,
+ 0x1.b7f76f2fb5e47p-1, -0x1.5584f7e54acp-57,
+ 0x1.ba5b030a1064ap-1, -0x1.efcd30e5429p-55,
+ 0x1.bcc1e904bc1d2p-1, 0x1.23dd07a2d9fp-56,
+ 0x1.bf2c25bd71e09p-1, -0x1.efdca3f6b9c8p-55,
+ 0x1.c199bdd85529cp-1, 0x1.11065895049p-56,
+ 0x1.c40ab5fffd07ap-1, 0x1.b4537e083c6p-55,
+ 0x1.c67f12e57d14bp-1, 0x1.2884dff483c8p-55,
+ 0x1.c8f6d9406e7b5p-1, 0x1.1acbc48805cp-57,
+ 0x1.cb720dcef9069p-1, 0x1.503cbd1e94ap-57,
+ 0x1.cdf0b555dc3fap-1, -0x1.dd83b53829dp-56,
+ 0x1.d072d4a07897cp-1, -0x1.cbc3743797a8p-55,
+ 0x1.d2f87080d89f2p-1, -0x1.d487b719d858p-55,
+ 0x1.d5818dcfba487p-1, 0x1.2ed02d75b37p-56,
+ 0x1.d80e316c98398p-1, -0x1.11ec18bedep-55,
+ 0x1.da9e603db3285p-1, 0x1.c2300696db5p-55,
+ 0x1.dd321f301b46p-1, 0x1.2da5778f019p-55,
+ 0x1.dfc97337b9b5fp-1, -0x1.1a5cd4f184b8p-55,
+ 0x1.e264614f5a129p-1, -0x1.7b627817a148p-55,
+ 0x1.e502ee78b3ff6p-1, 0x1.39e8980a9cdp-56,
+ 0x1.e7a51fbc74c83p-1, 0x1.2d522ca0c8ep-55,
+ 0x1.ea4afa2a490dap-1, -0x1.e9c23179c288p-55,
+ 0x1.ecf482d8e67f1p-1, -0x1.c93f3b411ad8p-55,
+ 0x1.efa1bee615a27p-1, 0x1.dc7f486a4b68p-55,
+ 0x1.f252b376bba97p-1, 0x1.3a1a5bf0d8e8p-55,
+ 0x1.f50765b6e454p-1, 0x1.9d3e12dd8a18p-55,
+ 0x1.f7bfdad9cbe14p-1, -0x1.dbb12d00635p-55,
+ 0x1.fa7c1819e90d8p-1, 0x1.74853f3a593p-56,
+ 0x1.fd3c22b8f71f1p-1, 0x1.2eb74966578p-58,
+ 0x1p+0, 0x0p+0,
+ 0x1.0163da9fb3335p+0, 0x1.b61299ab8cd8p-54,
+ 0x1.02c9a3e778061p+0, -0x1.19083535b08p-56,
+ 0x1.04315e86e7f85p+0, -0x1.0a31c1977c98p-54,
+ 0x1.059b0d3158574p+0, 0x1.d73e2a475b4p-55,
+ 0x1.0706b29ddf6dep+0, -0x1.c91dfe2b13cp-55,
+ 0x1.0874518759bc8p+0, 0x1.186be4bb284p-57,
+ 0x1.09e3ecac6f383p+0, 0x1.14878183161p-54,
+ 0x1.0b5586cf9890fp+0, 0x1.8a62e4adc61p-54,
+ 0x1.0cc922b7247f7p+0, 0x1.01edc16e24f8p-54,
+ 0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c58p-59,
+ 0x1.0fb66affed31bp+0, -0x1.b9bedc44ebcp-57,
+ 0x1.11301d0125b51p+0, -0x1.6c51039449bp-54,
+ 0x1.12abdc06c31ccp+0, -0x1.1b514b36ca8p-58,
+ 0x1.1429aaea92dep+0, -0x1.32fbf9af1368p-54,
+ 0x1.15a98c8a58e51p+0, 0x1.2406ab9eeabp-55,
+ 0x1.172b83c7d517bp+0, -0x1.19041b9d78ap-55,
+ 0x1.18af9388c8deap+0, -0x1.11023d1970f8p-54,
+ 0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4969p-55,
+ 0x1.1bbe084045cd4p+0, -0x1.95386352ef6p-54,
+ 0x1.1d4873168b9aap+0, 0x1.e016e00a264p-54,
+ 0x1.1ed5022fcd91dp+0, -0x1.1df98027bb78p-54,
+ 0x1.2063b88628cd6p+0, 0x1.dc775814a85p-55,
+ 0x1.21f49917ddc96p+0, 0x1.2a97e9494a6p-55,
+ 0x1.2387a6e756238p+0, 0x1.9b07eb6c7058p-54,
+ 0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f5p-55,
+ 0x1.26b4565e27cddp+0, 0x1.2bd339940eap-55,
+ 0x1.284dfe1f56381p+0, -0x1.a4c3a8c3f0d8p-54,
+ 0x1.29e9df51fdee1p+0, 0x1.612e8afad12p-55,
+ 0x1.2b87fd0dad99p+0, -0x1.10adcd6382p-59,
+ 0x1.2d285a6e4030bp+0, 0x1.0024754db42p-54,
+ 0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d524p-56,
+ 0x1.306fe0a31b715p+0, 0x1.6f46ad23183p-55,
+ 0x1.32170fc4cd831p+0, 0x1.a9ce78e1804p-55,
+ 0x1.33c08b26416ffp+0, 0x1.327218436598p-54,
+ 0x1.356c55f929ff1p+0, -0x1.b5cee5c4e46p-55,
+ 0x1.371a7373aa9cbp+0, -0x1.63aeabf42ebp-54,
+ 0x1.38cae6d05d866p+0, -0x1.e958d3c99048p-54,
+ 0x1.3a7db34e59ff7p+0, -0x1.5e436d661f6p-56,
+ 0x1.3c32dc313a8e5p+0, -0x1.efff8375d2ap-54,
+ 0x1.3dea64c123422p+0, 0x1.ada0911f09fp-55,
+ 0x1.3fa4504ac801cp+0, -0x1.7d023f956fap-54,
+ 0x1.4160a21f72e2ap+0, -0x1.ef3691c309p-58,
+ 0x1.431f5d950a897p+0, -0x1.1c7dde35f7ap-55,
+ 0x1.44e086061892dp+0, 0x1.89b7a04ef8p-59,
+ 0x1.46a41ed1d0057p+0, 0x1.c944bd1648a8p-54,
+ 0x1.486a2b5c13cdp+0, 0x1.3c1a3b69062p-56,
+ 0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be8p-54,
+ 0x1.4bfdad5362a27p+0, 0x1.d4397afec42p-56,
+ 0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a78p-54,
+ 0x1.4f9b2769d2ca7p+0, -0x1.4b309d25958p-54,
+ 0x1.516daa2cf6642p+0, -0x1.f768569bd94p-55,
+ 0x1.5342b569d4f82p+0, -0x1.07abe1db13dp-55,
+ 0x1.551a4ca5d920fp+0, -0x1.d689cefede6p-55,
+ 0x1.56f4736b527dap+0, 0x1.9bb2c011d938p-54,
+ 0x1.58d12d497c7fdp+0, 0x1.295e15b9a1ep-55,
+ 0x1.5ab07dd485429p+0, 0x1.6324c0546478p-54,
+ 0x1.5c9268a5946b7p+0, 0x1.c4b1b81698p-60,
+ 0x1.5e76f15ad2148p+0, 0x1.ba6f93080e68p-54,
+ 0x1.605e1b976dc09p+0, -0x1.3e2429b56de8p-54,
+ 0x1.6247eb03a5585p+0, -0x1.383c17e40b48p-54,
+ 0x1.6434634ccc32p+0, -0x1.c483c759d89p-55,
+ 0x1.6623882552225p+0, -0x1.bb60987591cp-54,
+ 0x1.68155d44ca973p+0, 0x1.038ae44f74p-57,
+};
+
+/*
+ * exp2l(x): compute the base 2 exponential of x
+ *
+ * Accuracy: Peak error < 0.511 ulp.
+ *
+ * Method: (equally-spaced tables)
+ *
+ * Reduce x:
+ * x = 2**k + y, for integer k and |y| <= 1/2.
+ * Thus we have exp2l(x) = 2**k * exp2(y).
+ *
+ * Reduce y:
+ * y = i/TBLSIZE + z for integer i near y * TBLSIZE.
+ * Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
+ * with |z| <= 2**-(TBLBITS+1).
+ *
+ * We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
+ * degree-6 minimax polynomial with maximum error under 2**-69.
+ * The table entries each have 104 bits of accuracy, encoded as
+ * a pair of double precision values.
+ */
+long double exp2l(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ long double r, z;
+ uint32_t i0;
+ union {uint32_t u; int32_t i;} k;
+
+ /* Filter out exceptional cases. */
+ if (e >= 0x3fff + 13) { /* |x| >= 8192 or x is NaN */
+ if (u.i.se >= 0x3fff + 14 && u.i.se >> 15 == 0)
+ /* overflow */
+ return x * 0x1p16383L;
+ if (e == 0x7fff) /* -inf or -nan */
+ return -1/x;
+ if (x < -16382) {
+ if (x <= -16446 || x - 0x1p63 + 0x1p63 != x)
+ /* underflow */
+ FORCE_EVAL((float)(-0x1p-149/x));
+ if (x <= -16446)
+ return 0;
+ }
+ } else if (e < 0x3fff - 64) {
+ return 1 + x;
+ }
+
+ /*
+ * Reduce x, computing z, i0, and k. The low bits of x + redux
+ * contain the 16-bit integer part of the exponent (k) followed by
+ * TBLBITS fractional bits (i0). We use bit tricks to extract these
+ * as integers, then set z to the remainder.
+ *
+ * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
+ * Then the low-order word of x + redux is 0x000abc12,
+ * We split this into k = 0xabc and i0 = 0x12 (adjusted to
+ * index into the table), then we compute z = 0x0.003456p0.
+ */
+ u.f = x + redux;
+ i0 = u.i.m + TBLSIZE / 2;
+ k.u = i0 / TBLSIZE * TBLSIZE;
+ k.i /= TBLSIZE;
+ i0 %= TBLSIZE;
+ u.f -= redux;
+ z = x - u.f;
+
+ /* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
+ long double t_hi = tbl[2*i0];
+ long double t_lo = tbl[2*i0 + 1];
+ /* XXX This gives > 1 ulp errors outside of FE_TONEAREST mode */
+ r = t_lo + (t_hi + t_lo) * z * (P1 + z * (P2 + z * (P3 + z * (P4
+ + z * (P5 + z * P6))))) + t_hi;
+
+ return scalbnl(r, k.i);
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+#define TBLBITS 7
+#define TBLSIZE (1 << TBLBITS)
+
+static const long double
+ P1 = 0x1.62e42fefa39ef35793c7673007e6p-1L,
+ P2 = 0x1.ebfbdff82c58ea86f16b06ec9736p-3L,
+ P3 = 0x1.c6b08d704a0bf8b33a762bad3459p-5L,
+ P4 = 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p-7L,
+ P5 = 0x1.5d87fe78a67311071dee13fd11d9p-10L,
+ P6 = 0x1.430912f86c7876f4b663b23c5fe5p-13L;
+
+static const double
+ P7 = 0x1.ffcbfc588b041p-17,
+ P8 = 0x1.62c0223a5c7c7p-20,
+ P9 = 0x1.b52541ff59713p-24,
+ P10 = 0x1.e4cf56a391e22p-28,
+ redux = 0x1.8p112 / TBLSIZE;
+
+static const long double tbl[TBLSIZE] = {
+ 0x1.6a09e667f3bcc908b2fb1366dfeap-1L,
+ 0x1.6c012750bdabeed76a99800f4edep-1L,
+ 0x1.6dfb23c651a2ef220e2cbe1bc0d4p-1L,
+ 0x1.6ff7df9519483cf87e1b4f3e1e98p-1L,
+ 0x1.71f75e8ec5f73dd2370f2ef0b148p-1L,
+ 0x1.73f9a48a58173bd5c9a4e68ab074p-1L,
+ 0x1.75feb564267c8bf6e9aa33a489a8p-1L,
+ 0x1.780694fde5d3f619ae02808592a4p-1L,
+ 0x1.7a11473eb0186d7d51023f6ccb1ap-1L,
+ 0x1.7c1ed0130c1327c49334459378dep-1L,
+ 0x1.7e2f336cf4e62105d02ba1579756p-1L,
+ 0x1.80427543e1a11b60de67649a3842p-1L,
+ 0x1.82589994cce128acf88afab34928p-1L,
+ 0x1.8471a4623c7acce52f6b97c6444cp-1L,
+ 0x1.868d99b4492ec80e41d90ac2556ap-1L,
+ 0x1.88ac7d98a669966530bcdf2d4cc0p-1L,
+ 0x1.8ace5422aa0db5ba7c55a192c648p-1L,
+ 0x1.8cf3216b5448bef2aa1cd161c57ap-1L,
+ 0x1.8f1ae991577362b982745c72eddap-1L,
+ 0x1.9145b0b91ffc588a61b469f6b6a0p-1L,
+ 0x1.93737b0cdc5e4f4501c3f2540ae8p-1L,
+ 0x1.95a44cbc8520ee9b483695a0e7fep-1L,
+ 0x1.97d829fde4e4f8b9e920f91e8eb6p-1L,
+ 0x1.9a0f170ca07b9ba3109b8c467844p-1L,
+ 0x1.9c49182a3f0901c7c46b071f28dep-1L,
+ 0x1.9e86319e323231824ca78e64c462p-1L,
+ 0x1.a0c667b5de564b29ada8b8cabbacp-1L,
+ 0x1.a309bec4a2d3358c171f770db1f4p-1L,
+ 0x1.a5503b23e255c8b424491caf88ccp-1L,
+ 0x1.a799e1330b3586f2dfb2b158f31ep-1L,
+ 0x1.a9e6b5579fdbf43eb243bdff53a2p-1L,
+ 0x1.ac36bbfd3f379c0db966a3126988p-1L,
+ 0x1.ae89f995ad3ad5e8734d17731c80p-1L,
+ 0x1.b0e07298db66590842acdfc6fb4ep-1L,
+ 0x1.b33a2b84f15faf6bfd0e7bd941b0p-1L,
+ 0x1.b59728de559398e3881111648738p-1L,
+ 0x1.b7f76f2fb5e46eaa7b081ab53ff6p-1L,
+ 0x1.ba5b030a10649840cb3c6af5b74cp-1L,
+ 0x1.bcc1e904bc1d2247ba0f45b3d06cp-1L,
+ 0x1.bf2c25bd71e088408d7025190cd0p-1L,
+ 0x1.c199bdd85529c2220cb12a0916bap-1L,
+ 0x1.c40ab5fffd07a6d14df820f17deap-1L,
+ 0x1.c67f12e57d14b4a2137fd20f2a26p-1L,
+ 0x1.c8f6d9406e7b511acbc48805c3f6p-1L,
+ 0x1.cb720dcef90691503cbd1e949d0ap-1L,
+ 0x1.cdf0b555dc3f9c44f8958fac4f12p-1L,
+ 0x1.d072d4a07897b8d0f22f21a13792p-1L,
+ 0x1.d2f87080d89f18ade123989ea50ep-1L,
+ 0x1.d5818dcfba48725da05aeb66dff8p-1L,
+ 0x1.d80e316c98397bb84f9d048807a0p-1L,
+ 0x1.da9e603db3285708c01a5b6d480cp-1L,
+ 0x1.dd321f301b4604b695de3c0630c0p-1L,
+ 0x1.dfc97337b9b5eb968cac39ed284cp-1L,
+ 0x1.e264614f5a128a12761fa17adc74p-1L,
+ 0x1.e502ee78b3ff6273d130153992d0p-1L,
+ 0x1.e7a51fbc74c834b548b2832378a4p-1L,
+ 0x1.ea4afa2a490d9858f73a18f5dab4p-1L,
+ 0x1.ecf482d8e67f08db0312fb949d50p-1L,
+ 0x1.efa1bee615a27771fd21a92dabb6p-1L,
+ 0x1.f252b376bba974e8696fc3638f24p-1L,
+ 0x1.f50765b6e4540674f84b762861a6p-1L,
+ 0x1.f7bfdad9cbe138913b4bfe72bd78p-1L,
+ 0x1.fa7c1819e90d82e90a7e74b26360p-1L,
+ 0x1.fd3c22b8f71f10975ba4b32bd006p-1L,
+ 0x1.0000000000000000000000000000p+0L,
+ 0x1.0163da9fb33356d84a66ae336e98p+0L,
+ 0x1.02c9a3e778060ee6f7caca4f7a18p+0L,
+ 0x1.04315e86e7f84bd738f9a20da442p+0L,
+ 0x1.059b0d31585743ae7c548eb68c6ap+0L,
+ 0x1.0706b29ddf6ddc6dc403a9d87b1ep+0L,
+ 0x1.0874518759bc808c35f25d942856p+0L,
+ 0x1.09e3ecac6f3834521e060c584d5cp+0L,
+ 0x1.0b5586cf9890f6298b92b7184200p+0L,
+ 0x1.0cc922b7247f7407b705b893dbdep+0L,
+ 0x1.0e3ec32d3d1a2020742e4f8af794p+0L,
+ 0x1.0fb66affed31af232091dd8a169ep+0L,
+ 0x1.11301d0125b50a4ebbf1aed9321cp+0L,
+ 0x1.12abdc06c31cbfb92bad324d6f84p+0L,
+ 0x1.1429aaea92ddfb34101943b2588ep+0L,
+ 0x1.15a98c8a58e512480d573dd562aep+0L,
+ 0x1.172b83c7d517adcdf7c8c50eb162p+0L,
+ 0x1.18af9388c8de9bbbf70b9a3c269cp+0L,
+ 0x1.1a35beb6fcb753cb698f692d2038p+0L,
+ 0x1.1bbe084045cd39ab1e72b442810ep+0L,
+ 0x1.1d4873168b9aa7805b8028990be8p+0L,
+ 0x1.1ed5022fcd91cb8819ff61121fbep+0L,
+ 0x1.2063b88628cd63b8eeb0295093f6p+0L,
+ 0x1.21f49917ddc962552fd29294bc20p+0L,
+ 0x1.2387a6e75623866c1fadb1c159c0p+0L,
+ 0x1.251ce4fb2a63f3582ab7de9e9562p+0L,
+ 0x1.26b4565e27cdd257a673281d3068p+0L,
+ 0x1.284dfe1f5638096cf15cf03c9fa0p+0L,
+ 0x1.29e9df51fdee12c25d15f5a25022p+0L,
+ 0x1.2b87fd0dad98ffddea46538fca24p+0L,
+ 0x1.2d285a6e4030b40091d536d0733ep+0L,
+ 0x1.2ecafa93e2f5611ca0f45d5239a4p+0L,
+ 0x1.306fe0a31b7152de8d5a463063bep+0L,
+ 0x1.32170fc4cd8313539cf1c3009330p+0L,
+ 0x1.33c08b26416ff4c9c8610d96680ep+0L,
+ 0x1.356c55f929ff0c94623476373be4p+0L,
+ 0x1.371a7373aa9caa7145502f45452ap+0L,
+ 0x1.38cae6d05d86585a9cb0d9bed530p+0L,
+ 0x1.3a7db34e59ff6ea1bc9299e0a1fep+0L,
+ 0x1.3c32dc313a8e484001f228b58cf0p+0L,
+ 0x1.3dea64c12342235b41223e13d7eep+0L,
+ 0x1.3fa4504ac801ba0bf701aa417b9cp+0L,
+ 0x1.4160a21f72e29f84325b8f3dbacap+0L,
+ 0x1.431f5d950a896dc704439410b628p+0L,
+ 0x1.44e086061892d03136f409df0724p+0L,
+ 0x1.46a41ed1d005772512f459229f0ap+0L,
+ 0x1.486a2b5c13cd013c1a3b69062f26p+0L,
+ 0x1.4a32af0d7d3de672d8bcf46f99b4p+0L,
+ 0x1.4bfdad5362a271d4397afec42e36p+0L,
+ 0x1.4dcb299fddd0d63b36ef1a9e19dep+0L,
+ 0x1.4f9b2769d2ca6ad33d8b69aa0b8cp+0L,
+ 0x1.516daa2cf6641c112f52c84d6066p+0L,
+ 0x1.5342b569d4f81df0a83c49d86bf4p+0L,
+ 0x1.551a4ca5d920ec52ec620243540cp+0L,
+ 0x1.56f4736b527da66ecb004764e61ep+0L,
+ 0x1.58d12d497c7fd252bc2b7343d554p+0L,
+ 0x1.5ab07dd48542958c93015191e9a8p+0L,
+ 0x1.5c9268a5946b701c4b1b81697ed4p+0L,
+ 0x1.5e76f15ad21486e9be4c20399d12p+0L,
+ 0x1.605e1b976dc08b076f592a487066p+0L,
+ 0x1.6247eb03a5584b1f0fa06fd2d9eap+0L,
+ 0x1.6434634ccc31fc76f8714c4ee122p+0L,
+ 0x1.66238825522249127d9e29b92ea2p+0L,
+ 0x1.68155d44ca973081c57227b9f69ep+0L,
+};
+
+static const float eps[TBLSIZE] = {
+ -0x1.5c50p-101,
+ -0x1.5d00p-106,
+ 0x1.8e90p-102,
+ -0x1.5340p-103,
+ 0x1.1bd0p-102,
+ -0x1.4600p-105,
+ -0x1.7a40p-104,
+ 0x1.d590p-102,
+ -0x1.d590p-101,
+ 0x1.b100p-103,
+ -0x1.0d80p-105,
+ 0x1.6b00p-103,
+ -0x1.9f00p-105,
+ 0x1.c400p-103,
+ 0x1.e120p-103,
+ -0x1.c100p-104,
+ -0x1.9d20p-103,
+ 0x1.a800p-108,
+ 0x1.4c00p-106,
+ -0x1.9500p-106,
+ 0x1.6900p-105,
+ -0x1.29d0p-100,
+ 0x1.4c60p-103,
+ 0x1.13a0p-102,
+ -0x1.5b60p-103,
+ -0x1.1c40p-103,
+ 0x1.db80p-102,
+ 0x1.91a0p-102,
+ 0x1.dc00p-105,
+ 0x1.44c0p-104,
+ 0x1.9710p-102,
+ 0x1.8760p-103,
+ -0x1.a720p-103,
+ 0x1.ed20p-103,
+ -0x1.49c0p-102,
+ -0x1.e000p-111,
+ 0x1.86a0p-103,
+ 0x1.2b40p-103,
+ -0x1.b400p-108,
+ 0x1.1280p-99,
+ -0x1.02d8p-102,
+ -0x1.e3d0p-103,
+ -0x1.b080p-105,
+ -0x1.f100p-107,
+ -0x1.16c0p-105,
+ -0x1.1190p-103,
+ -0x1.a7d2p-100,
+ 0x1.3450p-103,
+ -0x1.67c0p-105,
+ 0x1.4b80p-104,
+ -0x1.c4e0p-103,
+ 0x1.6000p-108,
+ -0x1.3f60p-105,
+ 0x1.93f0p-104,
+ 0x1.5fe0p-105,
+ 0x1.6f80p-107,
+ -0x1.7600p-106,
+ 0x1.21e0p-106,
+ -0x1.3a40p-106,
+ -0x1.40c0p-104,
+ -0x1.9860p-105,
+ -0x1.5d40p-108,
+ -0x1.1d70p-106,
+ 0x1.2760p-105,
+ 0x0.0000p+0,
+ 0x1.21e2p-104,
+ -0x1.9520p-108,
+ -0x1.5720p-106,
+ -0x1.4810p-106,
+ -0x1.be00p-109,
+ 0x1.0080p-105,
+ -0x1.5780p-108,
+ -0x1.d460p-105,
+ -0x1.6140p-105,
+ 0x1.4630p-104,
+ 0x1.ad50p-103,
+ 0x1.82e0p-105,
+ 0x1.1d3cp-101,
+ 0x1.6100p-107,
+ 0x1.ec30p-104,
+ 0x1.f200p-108,
+ 0x1.0b40p-103,
+ 0x1.3660p-102,
+ 0x1.d9d0p-103,
+ -0x1.02d0p-102,
+ 0x1.b070p-103,
+ 0x1.b9c0p-104,
+ -0x1.01c0p-103,
+ -0x1.dfe0p-103,
+ 0x1.1b60p-104,
+ -0x1.ae94p-101,
+ -0x1.3340p-104,
+ 0x1.b3d8p-102,
+ -0x1.6e40p-105,
+ -0x1.3670p-103,
+ 0x1.c140p-104,
+ 0x1.1840p-101,
+ 0x1.1ab0p-102,
+ -0x1.a400p-104,
+ 0x1.1f00p-104,
+ -0x1.7180p-103,
+ 0x1.4ce0p-102,
+ 0x1.9200p-107,
+ -0x1.54c0p-103,
+ 0x1.1b80p-105,
+ -0x1.1828p-101,
+ 0x1.5720p-102,
+ -0x1.a060p-100,
+ 0x1.9160p-102,
+ 0x1.a280p-104,
+ 0x1.3400p-107,
+ 0x1.2b20p-102,
+ 0x1.7800p-108,
+ 0x1.cfd0p-101,
+ 0x1.2ef0p-102,
+ -0x1.2760p-99,
+ 0x1.b380p-104,
+ 0x1.0048p-101,
+ -0x1.60b0p-102,
+ 0x1.a1ccp-100,
+ -0x1.a640p-104,
+ -0x1.08a0p-101,
+ 0x1.7e60p-102,
+ 0x1.22c0p-103,
+ -0x1.7200p-106,
+ 0x1.f0f0p-102,
+ 0x1.eb4ep-99,
+ 0x1.c6e0p-103,
+};
+
+/*
+ * exp2l(x): compute the base 2 exponential of x
+ *
+ * Accuracy: Peak error < 0.502 ulp.
+ *
+ * Method: (accurate tables)
+ *
+ * Reduce x:
+ * x = 2**k + y, for integer k and |y| <= 1/2.
+ * Thus we have exp2(x) = 2**k * exp2(y).
+ *
+ * Reduce y:
+ * y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
+ * Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
+ * with |z - eps[i]| <= 2**-8 + 2**-98 for the table used.
+ *
+ * We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
+ * a degree-10 minimax polynomial with maximum error under 2**-120.
+ * The values in exp2t[] and eps[] are chosen such that
+ * exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
+ * that exp2t[i] is accurate to 2**-122.
+ *
+ * Note that the range of i is +-TBLSIZE/2, so we actually index the tables
+ * by i0 = i + TBLSIZE/2.
+ *
+ * This method is due to Gal, with many details due to Gal and Bachelis:
+ *
+ * Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
+ * for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
+ */
+long double
+exp2l(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ long double r, z, t;
+ uint32_t i0;
+ union {uint32_t u; int32_t i;} k;
+
+ /* Filter out exceptional cases. */
+ if (e >= 0x3fff + 14) { /* |x| >= 16384 or x is NaN */
+ if (u.i.se >= 0x3fff + 15 && u.i.se >> 15 == 0)
+ /* overflow */
+ return x * 0x1p16383L;
+ if (e == 0x7fff) /* -inf or -nan */
+ return -1/x;
+ if (x < -16382) {
+ if (x <= -16495 || x - 0x1p112 + 0x1p112 != x)
+ /* underflow */
+ FORCE_EVAL((float)(-0x1p-149/x));
+ if (x <= -16446)
+ return 0;
+ }
+ } else if (e < 0x3fff - 114) {
+ return 1 + x;
+ }
+
+ /*
+ * Reduce x, computing z, i0, and k. The low bits of x + redux
+ * contain the 16-bit integer part of the exponent (k) followed by
+ * TBLBITS fractional bits (i0). We use bit tricks to extract these
+ * as integers, then set z to the remainder.
+ *
+ * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
+ * Then the low-order word of x + redux is 0x000abc12,
+ * We split this into k = 0xabc and i0 = 0x12 (adjusted to
+ * index into the table), then we compute z = 0x0.003456p0.
+ */
+ u.f = x + redux;
+ i0 = u.i2.lo + TBLSIZE / 2;
+ k.u = i0 / TBLSIZE * TBLSIZE;
+ k.i /= TBLSIZE;
+ i0 %= TBLSIZE;
+ u.f -= redux;
+ z = x - u.f;
+
+ /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+ t = tbl[i0];
+ z -= eps[i0];
+ r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * (P6
+ + z * (P7 + z * (P8 + z * (P9 + z * P10)))))))));
+
+ return scalbnl(r, k.i);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expf.c b/lib/mlibc/options/ansi/musl-generic-math/expf.c
new file mode 100644
index 0000000..feee2b0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/expf.c
@@ -0,0 +1,83 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+half[2] = {0.5,-0.5},
+ln2hi = 6.9314575195e-1f, /* 0x3f317200 */
+ln2lo = 1.4286067653e-6f, /* 0x35bfbe8e */
+invln2 = 1.4426950216e+0f, /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
+ * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
+ */
+P1 = 1.6666625440e-1f, /* 0xaaaa8f.0p-26 */
+P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */
+
+float expf(float x)
+{
+ float_t hi, lo, c, xx, y;
+ int k, sign;
+ uint32_t hx;
+
+ GET_FLOAT_WORD(hx, x);
+ sign = hx >> 31; /* sign bit of x */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if (hx >= 0x42aeac50) { /* if |x| >= -87.33655f or NaN */
+ if (hx > 0x7f800000) /* NaN */
+ return x;
+ if (hx >= 0x42b17218 && !sign) { /* x >= 88.722839f */
+ /* overflow */
+ x *= 0x1p127f;
+ return x;
+ }
+ if (sign) {
+ /* underflow */
+ FORCE_EVAL(-0x1p-149f/x);
+ if (hx >= 0x42cff1b5) /* x <= -103.972084f */
+ return 0;
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+ if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */
+ k = invln2*x + half[sign];
+ else
+ k = 1 - sign - sign;
+ hi = x - k*ln2hi; /* k*ln2hi is exact here */
+ lo = k*ln2lo;
+ x = hi - lo;
+ } else if (hx > 0x39000000) { /* |x| > 2**-14 */
+ k = 0;
+ hi = x;
+ lo = 0;
+ } else {
+ /* raise inexact */
+ FORCE_EVAL(0x1p127f + x);
+ return 1 + x;
+ }
+
+ /* x is now in primary range */
+ xx = x*x;
+ c = x - xx*(P1+xx*P2);
+ y = 1 + (x*c/(2-c) - lo + hi);
+ if (k == 0)
+ return y;
+ return scalbnf(y, k);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expl.c b/lib/mlibc/options/ansi/musl-generic-math/expl.c
new file mode 100644
index 0000000..0a7f44f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/expl.c
@@ -0,0 +1,128 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Exponential function, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, expl();
+ *
+ * y = expl( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns e (2.71828...) raised to the x power.
+ *
+ * Range reduction is accomplished by separating the argument
+ * into an integer k and fraction f such that
+ *
+ * x k f
+ * e = 2 e.
+ *
+ * A Pade' form of degree 5/6 is used to approximate exp(f) - 1
+ * in the basic range [-0.5 ln 2, 0.5 ln 2].
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE +-10000 50000 1.12e-19 2.81e-20
+ *
+ *
+ * Error amplification in the exponential function can be
+ * a serious matter. The error propagation involves
+ * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
+ * which shows that a 1 lsb error in representing X produces
+ * a relative error of X times 1 lsb in the function.
+ * While the routine gives an accurate result for arguments
+ * that are exactly represented by a long double precision
+ * computer number, the result contains amplified roundoff
+ * error for large arguments not exactly represented.
+ *
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * exp underflow x < MINLOG 0.0
+ * exp overflow x > MAXLOG MAXNUM
+ *
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double expl(long double x)
+{
+ return exp(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+
+static const long double P[3] = {
+ 1.2617719307481059087798E-4L,
+ 3.0299440770744196129956E-2L,
+ 9.9999999999999999991025E-1L,
+};
+static const long double Q[4] = {
+ 3.0019850513866445504159E-6L,
+ 2.5244834034968410419224E-3L,
+ 2.2726554820815502876593E-1L,
+ 2.0000000000000000000897E0L,
+};
+static const long double
+LN2HI = 6.9314575195312500000000E-1L,
+LN2LO = 1.4286068203094172321215E-6L,
+LOG2E = 1.4426950408889634073599E0L;
+
+long double expl(long double x)
+{
+ long double px, xx;
+ int k;
+
+ if (isnan(x))
+ return x;
+ if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
+ return x * 0x1p16383L;
+ if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
+ return -0x1p-16445L/x;
+
+ /* Express e**x = e**f 2**k
+ * = e**(f + k ln(2))
+ */
+ px = floorl(LOG2E * x + 0.5);
+ k = px;
+ x -= px * LN2HI;
+ x -= px * LN2LO;
+
+ /* rational approximation of the fractional part:
+ * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
+ */
+ xx = x * x;
+ px = x * __polevll(xx, P, 2);
+ x = px/(__polevll(xx, Q, 3) - px);
+ x = 1.0 + 2.0 * x;
+ return scalbnl(x, k);
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double expl(long double x)
+{
+ return exp(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1.c b/lib/mlibc/options/ansi/musl-generic-math/expm1.c
new file mode 100644
index 0000000..ac1e61e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/expm1.c
@@ -0,0 +1,201 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+ *
+ * Here a correction term c will be computed to compensate
+ * the error in r when rounded to a floating-point number.
+ *
+ * 2. Approximating expm1(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Since
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ * we define R1(r*r) by
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ * That is,
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ * We use a special Remez algorithm on [0,0.347] to generate
+ * a polynomial of degree 5 in r*r to approximate R1. The
+ * maximum error of this polynomial approximation is bounded
+ * by 2**-61. In other words,
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ * where Q1 = -1.6666666666666567384E-2,
+ * Q2 = 3.9682539681370365873E-4,
+ * Q3 = -9.9206344733435987357E-6,
+ * Q4 = 2.5051361420808517002E-7,
+ * Q5 = -6.2843505682382617102E-9;
+ * z = r*r,
+ * with error bounded by
+ * | 5 | -61
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ * | |
+ *
+ * expm1(r) = exp(r)-1 is then computed by the following
+ * specific way which minimize the accumulation rounding error:
+ * 2 3
+ * r r [ 3 - (R1 + R1*r/2) ]
+ * expm1(r) = r + --- + --- * [--------------------]
+ * 2 2 [ 6 - r*(3 - R1*r/2) ]
+ *
+ * To compensate the error in the argument reduction, we use
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c
+ * ~ expm1(r) + c + r*c
+ * Thus c+r*c will be added in as the correction terms for
+ * expm1(r+c). Now rearrange the term to avoid optimization
+ * screw up:
+ * ( 2 2 )
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ * ( )
+ *
+ * = r - E
+ * 3. Scale back to obtain expm1(x):
+ * From step 1, we have
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1
+ * = or 2^k*[expm1(r) + (1-2^-k)]
+ * 4. Implementation notes:
+ * (A). To save one multiplication, we scale the coefficient Qi
+ * to Qi*2^i, and replace z by (x^2)/2.
+ * (B). To achieve maximum accuracy, we compute expm1(x) by
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ * (ii) if k=0, return r-E
+ * (iii) if k=-1, return 0.5*(r-E)-0.5
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ * else return 1.0+2.0*(r-E);
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ * (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ * expm1(INF) is INF, expm1(NaN) is NaN;
+ * expm1(-INF) is -1, and
+ * for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "libm.h"
+
+static const double
+o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
+ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
+Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+double expm1(double x)
+{
+ double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
+ union {double f; uint64_t i;} u = {x};
+ uint32_t hx = u.i>>32 & 0x7fffffff;
+ int k, sign = u.i>>63;
+
+ /* filter out huge and non-finite argument */
+ if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
+ if (isnan(x))
+ return x;
+ if (sign)
+ return -1;
+ if (x > o_threshold) {
+ x *= 0x1p1023;
+ return x;
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if (!sign) {
+ hi = x - ln2_hi;
+ lo = ln2_lo;
+ k = 1;
+ } else {
+ hi = x + ln2_hi;
+ lo = -ln2_lo;
+ k = -1;
+ }
+ } else {
+ k = invln2*x + (sign ? -0.5 : 0.5);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi-lo;
+ c = (hi-x)-lo;
+ } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
+ if (hx < 0x00100000)
+ FORCE_EVAL((float)x);
+ return x;
+ } else
+ k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5*x;
+ hxs = x*hfx;
+ r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+ t = 3.0-r1*hfx;
+ e = hxs*((r1-t)/(6.0 - x*t));
+ if (k == 0) /* c is 0 */
+ return x - (x*e-hxs);
+ e = x*(e-c) - c;
+ e -= hxs;
+ /* exp(x) ~ 2^k (x_reduced - e + 1) */
+ if (k == -1)
+ return 0.5*(x-e) - 0.5;
+ if (k == 1) {
+ if (x < -0.25)
+ return -2.0*(e-(x+0.5));
+ return 1.0+2.0*(x-e);
+ }
+ u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */
+ twopk = u.f;
+ if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
+ y = x - e + 1.0;
+ if (k == 1024)
+ y = y*2.0*0x1p1023;
+ else
+ y = y*twopk;
+ return y - 1.0;
+ }
+ u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */
+ if (k < 20)
+ y = (x-e+(1-u.f))*twopk;
+ else
+ y = (x-(e+u.f)+1)*twopk;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1f.c b/lib/mlibc/options/ansi/musl-generic-math/expm1f.c
new file mode 100644
index 0000000..297e0b4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/expm1f.c
@@ -0,0 +1,111 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+o_threshold = 8.8721679688e+01, /* 0x42b17180 */
+ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
+ * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
+ * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
+ */
+Q1 = -3.3333212137e-2, /* -0x888868.0p-28 */
+Q2 = 1.5807170421e-3; /* 0xcf3010.0p-33 */
+
+float expm1f(float x)
+{
+ float_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
+ union {float f; uint32_t i;} u = {x};
+ uint32_t hx = u.i & 0x7fffffff;
+ int k, sign = u.i >> 31;
+
+ /* filter out huge and non-finite argument */
+ if (hx >= 0x4195b844) { /* if |x|>=27*ln2 */
+ if (hx > 0x7f800000) /* NaN */
+ return x;
+ if (sign)
+ return -1;
+ if (x > o_threshold) {
+ x *= 0x1p127f;
+ return x;
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+ if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
+ if (!sign) {
+ hi = x - ln2_hi;
+ lo = ln2_lo;
+ k = 1;
+ } else {
+ hi = x + ln2_hi;
+ lo = -ln2_lo;
+ k = -1;
+ }
+ } else {
+ k = invln2*x + (sign ? -0.5f : 0.5f);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi-lo;
+ c = (hi-x)-lo;
+ } else if (hx < 0x33000000) { /* when |x|<2**-25, return x */
+ if (hx < 0x00800000)
+ FORCE_EVAL(x*x);
+ return x;
+ } else
+ k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5f*x;
+ hxs = x*hfx;
+ r1 = 1.0f+hxs*(Q1+hxs*Q2);
+ t = 3.0f - r1*hfx;
+ e = hxs*((r1-t)/(6.0f - x*t));
+ if (k == 0) /* c is 0 */
+ return x - (x*e-hxs);
+ e = x*(e-c) - c;
+ e -= hxs;
+ /* exp(x) ~ 2^k (x_reduced - e + 1) */
+ if (k == -1)
+ return 0.5f*(x-e) - 0.5f;
+ if (k == 1) {
+ if (x < -0.25f)
+ return -2.0f*(e-(x+0.5f));
+ return 1.0f + 2.0f*(x-e);
+ }
+ u.i = (0x7f+k)<<23; /* 2^k */
+ twopk = u.f;
+ if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
+ y = x - e + 1.0f;
+ if (k == 128)
+ y = y*2.0f*0x1p127f;
+ else
+ y = y*twopk;
+ return y - 1.0f;
+ }
+ u.i = (0x7f-k)<<23; /* 2^-k */
+ if (k < 23)
+ y = (x-e+(1-u.f))*twopk;
+ else
+ y = (x-(e+u.f)+1)*twopk;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1l.c b/lib/mlibc/options/ansi/musl-generic-math/expm1l.c
new file mode 100644
index 0000000..d171507
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/expm1l.c
@@ -0,0 +1,123 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Exponential function, minus 1
+ * Long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, expm1l();
+ *
+ * y = expm1l( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns e (2.71828...) raised to the x power, minus 1.
+ *
+ * Range reduction is accomplished by separating the argument
+ * into an integer k and fraction f such that
+ *
+ * x k f
+ * e = 2 e.
+ *
+ * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
+ * in the basic range [-0.5 ln 2, 0.5 ln 2].
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double expm1l(long double x)
+{
+ return expm1(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+
+/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
+ -.5 ln 2 < x < .5 ln 2
+ Theoretical peak relative error = 3.4e-22 */
+static const long double
+P0 = -1.586135578666346600772998894928250240826E4L,
+P1 = 2.642771505685952966904660652518429479531E3L,
+P2 = -3.423199068835684263987132888286791620673E2L,
+P3 = 1.800826371455042224581246202420972737840E1L,
+P4 = -5.238523121205561042771939008061958820811E-1L,
+Q0 = -9.516813471998079611319047060563358064497E4L,
+Q1 = 3.964866271411091674556850458227710004570E4L,
+Q2 = -7.207678383830091850230366618190187434796E3L,
+Q3 = 7.206038318724600171970199625081491823079E2L,
+Q4 = -4.002027679107076077238836622982900945173E1L,
+/* Q5 = 1.000000000000000000000000000000000000000E0 */
+/* C1 + C2 = ln 2 */
+C1 = 6.93145751953125E-1L,
+C2 = 1.428606820309417232121458176568075500134E-6L,
+/* ln 2^-65 */
+minarg = -4.5054566736396445112120088E1L,
+/* ln 2^16384 */
+maxarg = 1.1356523406294143949492E4L;
+
+long double expm1l(long double x)
+{
+ long double px, qx, xx;
+ int k;
+
+ if (isnan(x))
+ return x;
+ if (x > maxarg)
+ return x*0x1p16383L; /* overflow, unless x==inf */
+ if (x == 0.0)
+ return x;
+ if (x < minarg)
+ return -1.0;
+
+ xx = C1 + C2;
+ /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
+ px = floorl(0.5 + x / xx);
+ k = px;
+ /* remainder times ln 2 */
+ x -= px * C1;
+ x -= px * C2;
+
+ /* Approximate exp(remainder ln 2).*/
+ px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
+ qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
+ xx = x * x;
+ qx = x + (0.5 * xx + xx * px / qx);
+
+ /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
+ We have qx = exp(remainder ln 2) - 1, so
+ exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
+ px = scalbnl(1.0, k);
+ x = px * qx + (px - 1.0);
+ return x;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double expm1l(long double x)
+{
+ return expm1(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fabs.c b/lib/mlibc/options/ansi/musl-generic-math/fabs.c
new file mode 100644
index 0000000..e8258cf
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fabs.c
@@ -0,0 +1,9 @@
+#include <math.h>
+#include <stdint.h>
+
+double fabs(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ u.i &= -1ULL/2;
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fabsf.c b/lib/mlibc/options/ansi/musl-generic-math/fabsf.c
new file mode 100644
index 0000000..4efc8d6
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fabsf.c
@@ -0,0 +1,9 @@
+#include <math.h>
+#include <stdint.h>
+
+float fabsf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ u.i &= 0x7fffffff;
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fabsl.c b/lib/mlibc/options/ansi/musl-generic-math/fabsl.c
new file mode 100644
index 0000000..c4f36ec
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fabsl.c
@@ -0,0 +1,15 @@
+#include "libm.h"
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fabsl(long double x)
+{
+ return fabs(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double fabsl(long double x)
+{
+ union ldshape u = {x};
+
+ u.i.se &= 0x7fff;
+ return u.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fdim.c b/lib/mlibc/options/ansi/musl-generic-math/fdim.c
new file mode 100644
index 0000000..9585460
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fdim.c
@@ -0,0 +1,10 @@
+#include <math.h>
+
+double fdim(double x, double y)
+{
+ if (isnan(x))
+ return x;
+ if (isnan(y))
+ return y;
+ return x > y ? x - y : 0;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fdimf.c b/lib/mlibc/options/ansi/musl-generic-math/fdimf.c
new file mode 100644
index 0000000..543c364
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fdimf.c
@@ -0,0 +1,10 @@
+#include <math.h>
+
+float fdimf(float x, float y)
+{
+ if (isnan(x))
+ return x;
+ if (isnan(y))
+ return y;
+ return x > y ? x - y : 0;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fdiml.c b/lib/mlibc/options/ansi/musl-generic-math/fdiml.c
new file mode 100644
index 0000000..62e29b7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fdiml.c
@@ -0,0 +1,18 @@
+#include <math.h>
+#include <float.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fdiml(long double x, long double y)
+{
+ return fdim(x, y);
+}
+#else
+long double fdiml(long double x, long double y)
+{
+ if (isnan(x))
+ return x;
+ if (isnan(y))
+ return y;
+ return x > y ? x - y : 0;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/finite.c b/lib/mlibc/options/ansi/musl-generic-math/finite.c
new file mode 100644
index 0000000..25a0575
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/finite.c
@@ -0,0 +1,7 @@
+#define _GNU_SOURCE
+#include <math.h>
+
+int finite(double x)
+{
+ return isfinite(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/finitef.c b/lib/mlibc/options/ansi/musl-generic-math/finitef.c
new file mode 100644
index 0000000..2c4c771
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/finitef.c
@@ -0,0 +1,7 @@
+#define _GNU_SOURCE
+#include <math.h>
+
+int finitef(float x)
+{
+ return isfinite(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/floor.c b/lib/mlibc/options/ansi/musl-generic-math/floor.c
new file mode 100644
index 0000000..14a31cd
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/floor.c
@@ -0,0 +1,31 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const double_t toint = 1/EPS;
+
+double floor(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = u.i >> 52 & 0x7ff;
+ double_t y;
+
+ if (e >= 0x3ff+52 || x == 0)
+ return x;
+ /* y = int(x) - x, where int(x) is an integer neighbor of x */
+ if (u.i >> 63)
+ y = x - toint + toint - x;
+ else
+ y = x + toint - toint - x;
+ /* special case because of non-nearest rounding modes */
+ if (e <= 0x3ff-1) {
+ FORCE_EVAL(y);
+ return u.i >> 63 ? -1 : 0;
+ }
+ if (y > 0)
+ return x + y - 1;
+ return x + y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/floorf.c b/lib/mlibc/options/ansi/musl-generic-math/floorf.c
new file mode 100644
index 0000000..dceec73
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/floorf.c
@@ -0,0 +1,27 @@
+#include "libm.h"
+
+float floorf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = (int)(u.i >> 23 & 0xff) - 0x7f;
+ uint32_t m;
+
+ if (e >= 23)
+ return x;
+ if (e >= 0) {
+ m = 0x007fffff >> e;
+ if ((u.i & m) == 0)
+ return x;
+ FORCE_EVAL(x + 0x1p120f);
+ if (u.i >> 31)
+ u.i += m;
+ u.i &= ~m;
+ } else {
+ FORCE_EVAL(x + 0x1p120f);
+ if (u.i >> 31 == 0)
+ u.i = 0;
+ else if (u.i << 1)
+ u.f = -1.0;
+ }
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/floorl.c b/lib/mlibc/options/ansi/musl-generic-math/floorl.c
new file mode 100644
index 0000000..16aaec4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/floorl.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double floorl(long double x)
+{
+ return floor(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double floorl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ long double y;
+
+ if (e >= 0x3fff+LDBL_MANT_DIG-1 || x == 0)
+ return x;
+ /* y = int(x) - x, where int(x) is an integer neighbor of x */
+ if (u.i.se >> 15)
+ y = x - toint + toint - x;
+ else
+ y = x + toint - toint - x;
+ /* special case because of non-nearest rounding modes */
+ if (e <= 0x3fff-1) {
+ FORCE_EVAL(y);
+ return u.i.se >> 15 ? -1 : 0;
+ }
+ if (y > 0)
+ return x + y - 1;
+ return x + y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fma.c b/lib/mlibc/options/ansi/musl-generic-math/fma.c
new file mode 100644
index 0000000..f65eab7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fma.c
@@ -0,0 +1,194 @@
+#include <stdint.h>
+#include <float.h>
+#include <math.h>
+
+static inline int a_clz_64(uint64_t x)
+{
+ uint32_t y;
+ int r;
+ if (x>>32) y=x>>32, r=0; else y=x, r=32;
+ if (y>>16) y>>=16; else r |= 16;
+ if (y>>8) y>>=8; else r |= 8;
+ if (y>>4) y>>=4; else r |= 4;
+ if (y>>2) y>>=2; else r |= 2;
+ return r | !(y>>1);
+}
+
+#define ASUINT64(x) ((union {double f; uint64_t i;}){x}).i
+#define ZEROINFNAN (0x7ff-0x3ff-52-1)
+
+struct num { uint64_t m; int e; int sign; };
+
+static struct num normalize(double x)
+{
+ uint64_t ix = ASUINT64(x);
+ int e = ix>>52;
+ int sign = e & 0x800;
+ e &= 0x7ff;
+ if (!e) {
+ ix = ASUINT64(x*0x1p63);
+ e = ix>>52 & 0x7ff;
+ e = e ? e-63 : 0x800;
+ }
+ ix &= (1ull<<52)-1;
+ ix |= 1ull<<52;
+ ix <<= 1;
+ e -= 0x3ff + 52 + 1;
+ return (struct num){ix,e,sign};
+}
+
+static void mul(uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
+{
+ uint64_t t1,t2,t3;
+ uint64_t xlo = (uint32_t)x, xhi = x>>32;
+ uint64_t ylo = (uint32_t)y, yhi = y>>32;
+
+ t1 = xlo*ylo;
+ t2 = xlo*yhi + xhi*ylo;
+ t3 = xhi*yhi;
+ *lo = t1 + (t2<<32);
+ *hi = t3 + (t2>>32) + (t1 > *lo);
+}
+
+double fma(double x, double y, double z)
+{
+ #pragma STDC FENV_ACCESS ON
+
+ /* normalize so top 10bits and last bit are 0 */
+ struct num nx, ny, nz;
+ nx = normalize(x);
+ ny = normalize(y);
+ nz = normalize(z);
+
+ if (nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN)
+ return x*y + z;
+ if (nz.e >= ZEROINFNAN) {
+ if (nz.e > ZEROINFNAN) /* z==0 */
+ return x*y + z;
+ return z;
+ }
+
+ /* mul: r = x*y */
+ uint64_t rhi, rlo, zhi, zlo;
+ mul(&rhi, &rlo, nx.m, ny.m);
+ /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
+
+ /* align exponents */
+ int e = nx.e + ny.e;
+ int d = nz.e - e;
+ /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
+ if (d > 0) {
+ if (d < 64) {
+ zlo = nz.m<<d;
+ zhi = nz.m>>64-d;
+ } else {
+ zlo = 0;
+ zhi = nz.m;
+ e = nz.e - 64;
+ d -= 64;
+ if (d == 0) {
+ } else if (d < 64) {
+ rlo = rhi<<64-d | rlo>>d | !!(rlo<<64-d);
+ rhi = rhi>>d;
+ } else {
+ rlo = 1;
+ rhi = 0;
+ }
+ }
+ } else {
+ zhi = 0;
+ d = -d;
+ if (d == 0) {
+ zlo = nz.m;
+ } else if (d < 64) {
+ zlo = nz.m>>d | !!(nz.m<<64-d);
+ } else {
+ zlo = 1;
+ }
+ }
+
+ /* add */
+ int sign = nx.sign^ny.sign;
+ int samesign = !(sign^nz.sign);
+ int nonzero = 1;
+ if (samesign) {
+ /* r += z */
+ rlo += zlo;
+ rhi += zhi + (rlo < zlo);
+ } else {
+ /* r -= z */
+ uint64_t t = rlo;
+ rlo -= zlo;
+ rhi = rhi - zhi - (t < rlo);
+ if (rhi>>63) {
+ rlo = -rlo;
+ rhi = -rhi-!!rlo;
+ sign = !sign;
+ }
+ nonzero = !!rhi;
+ }
+
+ /* set rhi to top 63bit of the result (last bit is sticky) */
+ if (nonzero) {
+ e += 64;
+ d = a_clz_64(rhi)-1;
+ /* note: d > 0 */
+ rhi = rhi<<d | rlo>>64-d | !!(rlo<<d);
+ } else if (rlo) {
+ d = a_clz_64(rlo)-1;
+ if (d < 0)
+ rhi = rlo>>1 | (rlo&1);
+ else
+ rhi = rlo<<d;
+ } else {
+ /* exact +-0 */
+ return x*y + z;
+ }
+ e -= d;
+
+ /* convert to double */
+ int64_t i = rhi; /* i is in [1<<62,(1<<63)-1] */
+ if (sign)
+ i = -i;
+ double r = i; /* |r| is in [0x1p62,0x1p63] */
+
+ if (e < -1022-62) {
+ /* result is subnormal before rounding */
+ if (e == -1022-63) {
+ double c = 0x1p63;
+ if (sign)
+ c = -c;
+ if (r == c) {
+ /* min normal after rounding, underflow depends
+ on arch behaviour which can be imitated by
+ a double to float conversion */
+ float fltmin = 0x0.ffffff8p-63*FLT_MIN * r;
+ return DBL_MIN/FLT_MIN * fltmin;
+ }
+ /* one bit is lost when scaled, add another top bit to
+ only round once at conversion if it is inexact */
+ if (rhi << 53) {
+ i = rhi>>1 | (rhi&1) | 1ull<<62;
+ if (sign)
+ i = -i;
+ r = i;
+ r = 2*r - c; /* remove top bit */
+
+ /* raise underflow portably, such that it
+ cannot be optimized away */
+ {
+ double_t tiny = DBL_MIN/FLT_MIN * r;
+ r += (double)(tiny*tiny) * (r-r);
+ }
+ }
+ } else {
+ /* only round once when scaled */
+ d = 10;
+ i = ( rhi>>d | !!(rhi<<64-d) ) << d;
+ if (sign)
+ i = -i;
+ r = i;
+ }
+ }
+ return scalbn(r, e);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmaf.c b/lib/mlibc/options/ansi/musl-generic-math/fmaf.c
new file mode 100644
index 0000000..aa57feb
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmaf.c
@@ -0,0 +1,93 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_fmaf.c */
+/*-
+ * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <fenv.h>
+#include <math.h>
+#include <stdint.h>
+
+/*
+ * Fused multiply-add: Compute x * y + z with a single rounding error.
+ *
+ * A double has more than twice as much precision than a float, so
+ * direct double-precision arithmetic suffices, except where double
+ * rounding occurs.
+ */
+float fmaf(float x, float y, float z)
+{
+ #pragma STDC FENV_ACCESS ON
+ double xy, result;
+ union {double f; uint64_t i;} u;
+ int e;
+
+ xy = (double)x * y;
+ result = xy + z;
+ u.f = result;
+ e = u.i>>52 & 0x7ff;
+ /* Common case: The double precision result is fine. */
+ if ((u.i & 0x1fffffff) != 0x10000000 || /* not a halfway case */
+ e == 0x7ff || /* NaN */
+ result - xy == z || /* exact */
+ fegetround() != FE_TONEAREST) /* not round-to-nearest */
+ {
+ /*
+ underflow may not be raised correctly, example:
+ fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
+ */
+#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
+ if (e < 0x3ff-126 && e >= 0x3ff-149 && fetestexcept(FE_INEXACT)) {
+ feclearexcept(FE_INEXACT);
+ /* TODO: gcc and clang bug workaround */
+ volatile float vz = z;
+ result = xy + vz;
+ if (fetestexcept(FE_INEXACT))
+ feraiseexcept(FE_UNDERFLOW);
+ else
+ feraiseexcept(FE_INEXACT);
+ }
+#endif
+ z = result;
+ return z;
+ }
+
+ /*
+ * If result is inexact, and exactly halfway between two float values,
+ * we need to adjust the low-order bit in the direction of the error.
+ */
+#ifdef FE_TOWARDZERO
+ fesetround(FE_TOWARDZERO);
+#endif
+ volatile double vxy = xy; /* XXX work around gcc CSE bug */
+ double adjusted_result = vxy + z;
+ fesetround(FE_TONEAREST);
+ if (result == adjusted_result) {
+ u.f = adjusted_result;
+ u.i++;
+ adjusted_result = u.f;
+ }
+ z = adjusted_result;
+ return z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmal.c b/lib/mlibc/options/ansi/musl-generic-math/fmal.c
new file mode 100644
index 0000000..4506aac
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmal.c
@@ -0,0 +1,293 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */
+/*-
+ * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+
+#include "libm.h"
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fmal(long double x, long double y, long double z)
+{
+ return fma(x, y, z);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#include <fenv.h>
+#if LDBL_MANT_DIG == 64
+#define LASTBIT(u) (u.i.m & 1)
+#define SPLIT (0x1p32L + 1)
+#elif LDBL_MANT_DIG == 113
+#define LASTBIT(u) (u.i.lo & 1)
+#define SPLIT (0x1p57L + 1)
+#endif
+
+/*
+ * A struct dd represents a floating-point number with twice the precision
+ * of a long double. We maintain the invariant that "hi" stores the high-order
+ * bits of the result.
+ */
+struct dd {
+ long double hi;
+ long double lo;
+};
+
+/*
+ * Compute a+b exactly, returning the exact result in a struct dd. We assume
+ * that both a and b are finite, but make no assumptions about their relative
+ * magnitudes.
+ */
+static inline struct dd dd_add(long double a, long double b)
+{
+ struct dd ret;
+ long double s;
+
+ ret.hi = a + b;
+ s = ret.hi - a;
+ ret.lo = (a - (ret.hi - s)) + (b - s);
+ return (ret);
+}
+
+/*
+ * Compute a+b, with a small tweak: The least significant bit of the
+ * result is adjusted into a sticky bit summarizing all the bits that
+ * were lost to rounding. This adjustment negates the effects of double
+ * rounding when the result is added to another number with a higher
+ * exponent. For an explanation of round and sticky bits, see any reference
+ * on FPU design, e.g.,
+ *
+ * J. Coonen. An Implementation Guide to a Proposed Standard for
+ * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
+ */
+static inline long double add_adjusted(long double a, long double b)
+{
+ struct dd sum;
+ union ldshape u;
+
+ sum = dd_add(a, b);
+ if (sum.lo != 0) {
+ u.f = sum.hi;
+ if (!LASTBIT(u))
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+ }
+ return (sum.hi);
+}
+
+/*
+ * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
+ * that the result will be subnormal, and care is taken to ensure that
+ * double rounding does not occur.
+ */
+static inline long double add_and_denormalize(long double a, long double b, int scale)
+{
+ struct dd sum;
+ int bits_lost;
+ union ldshape u;
+
+ sum = dd_add(a, b);
+
+ /*
+ * If we are losing at least two bits of accuracy to denormalization,
+ * then the first lost bit becomes a round bit, and we adjust the
+ * lowest bit of sum.hi to make it a sticky bit summarizing all the
+ * bits in sum.lo. With the sticky bit adjusted, the hardware will
+ * break any ties in the correct direction.
+ *
+ * If we are losing only one bit to denormalization, however, we must
+ * break the ties manually.
+ */
+ if (sum.lo != 0) {
+ u.f = sum.hi;
+ bits_lost = -u.i.se - scale + 1;
+ if ((bits_lost != 1) ^ LASTBIT(u))
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+ }
+ return scalbnl(sum.hi, scale);
+}
+
+/*
+ * Compute a*b exactly, returning the exact result in a struct dd. We assume
+ * that both a and b are normalized, so no underflow or overflow will occur.
+ * The current rounding mode must be round-to-nearest.
+ */
+static inline struct dd dd_mul(long double a, long double b)
+{
+ struct dd ret;
+ long double ha, hb, la, lb, p, q;
+
+ p = a * SPLIT;
+ ha = a - p;
+ ha += p;
+ la = a - ha;
+
+ p = b * SPLIT;
+ hb = b - p;
+ hb += p;
+ lb = b - hb;
+
+ p = ha * hb;
+ q = ha * lb + la * hb;
+
+ ret.hi = p + q;
+ ret.lo = p - ret.hi + q + la * lb;
+ return (ret);
+}
+
+/*
+ * Fused multiply-add: Compute x * y + z with a single rounding error.
+ *
+ * We use scaling to avoid overflow/underflow, along with the
+ * canonical precision-doubling technique adapted from:
+ *
+ * Dekker, T. A Floating-Point Technique for Extending the
+ * Available Precision. Numer. Math. 18, 224-242 (1971).
+ */
+long double fmal(long double x, long double y, long double z)
+{
+ #pragma STDC FENV_ACCESS ON
+ long double xs, ys, zs, adj;
+ struct dd xy, r;
+ int oround;
+ int ex, ey, ez;
+ int spread;
+
+ /*
+ * Handle special cases. The order of operations and the particular
+ * return values here are crucial in handling special cases involving
+ * infinities, NaNs, overflows, and signed zeroes correctly.
+ */
+ if (!isfinite(x) || !isfinite(y))
+ return (x * y + z);
+ if (!isfinite(z))
+ return (z);
+ if (x == 0.0 || y == 0.0)
+ return (x * y + z);
+ if (z == 0.0)
+ return (x * y);
+
+ xs = frexpl(x, &ex);
+ ys = frexpl(y, &ey);
+ zs = frexpl(z, &ez);
+ oround = fegetround();
+ spread = ex + ey - ez;
+
+ /*
+ * If x * y and z are many orders of magnitude apart, the scaling
+ * will overflow, so we handle these cases specially. Rounding
+ * modes other than FE_TONEAREST are painful.
+ */
+ if (spread < -LDBL_MANT_DIG) {
+#ifdef FE_INEXACT
+ feraiseexcept(FE_INEXACT);
+#endif
+#ifdef FE_UNDERFLOW
+ if (!isnormal(z))
+ feraiseexcept(FE_UNDERFLOW);
+#endif
+ switch (oround) {
+ default: /* FE_TONEAREST */
+ return (z);
+#ifdef FE_TOWARDZERO
+ case FE_TOWARDZERO:
+ if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
+ return (z);
+ else
+ return (nextafterl(z, 0));
+#endif
+#ifdef FE_DOWNWARD
+ case FE_DOWNWARD:
+ if (x > 0.0 ^ y < 0.0)
+ return (z);
+ else
+ return (nextafterl(z, -INFINITY));
+#endif
+#ifdef FE_UPWARD
+ case FE_UPWARD:
+ if (x > 0.0 ^ y < 0.0)
+ return (nextafterl(z, INFINITY));
+ else
+ return (z);
+#endif
+ }
+ }
+ if (spread <= LDBL_MANT_DIG * 2)
+ zs = scalbnl(zs, -spread);
+ else
+ zs = copysignl(LDBL_MIN, zs);
+
+ fesetround(FE_TONEAREST);
+
+ /*
+ * Basic approach for round-to-nearest:
+ *
+ * (xy.hi, xy.lo) = x * y (exact)
+ * (r.hi, r.lo) = xy.hi + z (exact)
+ * adj = xy.lo + r.lo (inexact; low bit is sticky)
+ * result = r.hi + adj (correctly rounded)
+ */
+ xy = dd_mul(xs, ys);
+ r = dd_add(xy.hi, zs);
+
+ spread = ex + ey;
+
+ if (r.hi == 0.0) {
+ /*
+ * When the addends cancel to 0, ensure that the result has
+ * the correct sign.
+ */
+ fesetround(oround);
+ volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
+ return xy.hi + vzs + scalbnl(xy.lo, spread);
+ }
+
+ if (oround != FE_TONEAREST) {
+ /*
+ * There is no need to worry about double rounding in directed
+ * rounding modes.
+ * But underflow may not be raised correctly, example in downward rounding:
+ * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
+ */
+ long double ret;
+#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
+ int e = fetestexcept(FE_INEXACT);
+ feclearexcept(FE_INEXACT);
+#endif
+ fesetround(oround);
+ adj = r.lo + xy.lo;
+ ret = scalbnl(r.hi + adj, spread);
+#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
+ if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
+ feraiseexcept(FE_UNDERFLOW);
+ else if (e)
+ feraiseexcept(FE_INEXACT);
+#endif
+ return ret;
+ }
+
+ adj = add_adjusted(r.lo, xy.lo);
+ if (spread + ilogbl(r.hi) > -16383)
+ return scalbnl(r.hi + adj, spread);
+ else
+ return add_and_denormalize(r.hi, adj, spread);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmax.c b/lib/mlibc/options/ansi/musl-generic-math/fmax.c
new file mode 100644
index 0000000..94f0caa
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmax.c
@@ -0,0 +1,13 @@
+#include <math.h>
+
+double fmax(double x, double y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeros, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? y : x;
+ return x < y ? y : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmaxf.c b/lib/mlibc/options/ansi/musl-generic-math/fmaxf.c
new file mode 100644
index 0000000..695d817
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmaxf.c
@@ -0,0 +1,13 @@
+#include <math.h>
+
+float fmaxf(float x, float y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeroes, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? y : x;
+ return x < y ? y : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmaxl.c b/lib/mlibc/options/ansi/musl-generic-math/fmaxl.c
new file mode 100644
index 0000000..4b03158
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmaxl.c
@@ -0,0 +1,21 @@
+#include <math.h>
+#include <float.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fmaxl(long double x, long double y)
+{
+ return fmax(x, y);
+}
+#else
+long double fmaxl(long double x, long double y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeros, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? y : x;
+ return x < y ? y : x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmin.c b/lib/mlibc/options/ansi/musl-generic-math/fmin.c
new file mode 100644
index 0000000..08a8fd1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmin.c
@@ -0,0 +1,13 @@
+#include <math.h>
+
+double fmin(double x, double y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeros, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? x : y;
+ return x < y ? x : y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fminf.c b/lib/mlibc/options/ansi/musl-generic-math/fminf.c
new file mode 100644
index 0000000..3573c7d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fminf.c
@@ -0,0 +1,13 @@
+#include <math.h>
+
+float fminf(float x, float y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeros, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? x : y;
+ return x < y ? x : y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fminl.c b/lib/mlibc/options/ansi/musl-generic-math/fminl.c
new file mode 100644
index 0000000..69bc24a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fminl.c
@@ -0,0 +1,21 @@
+#include <math.h>
+#include <float.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fminl(long double x, long double y)
+{
+ return fmin(x, y);
+}
+#else
+long double fminl(long double x, long double y)
+{
+ if (isnan(x))
+ return y;
+ if (isnan(y))
+ return x;
+ /* handle signed zeros, see C99 Annex F.9.9.2 */
+ if (signbit(x) != signbit(y))
+ return signbit(x) ? x : y;
+ return x < y ? x : y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmod.c b/lib/mlibc/options/ansi/musl-generic-math/fmod.c
new file mode 100644
index 0000000..6849722
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmod.c
@@ -0,0 +1,68 @@
+#include <math.h>
+#include <stdint.h>
+
+double fmod(double x, double y)
+{
+ union {double f; uint64_t i;} ux = {x}, uy = {y};
+ int ex = ux.i>>52 & 0x7ff;
+ int ey = uy.i>>52 & 0x7ff;
+ int sx = ux.i>>63;
+ uint64_t i;
+
+ /* in the followings uxi should be ux.i, but then gcc wrongly adds */
+ /* float load/store to inner loops ruining performance and code size */
+ uint64_t uxi = ux.i;
+
+ if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
+ return (x*y)/(x*y);
+ if (uxi<<1 <= uy.i<<1) {
+ if (uxi<<1 == uy.i<<1)
+ return 0*x;
+ return x;
+ }
+
+ /* normalize x and y */
+ if (!ex) {
+ for (i = uxi<<12; i>>63 == 0; ex--, i <<= 1);
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= -1ULL >> 12;
+ uxi |= 1ULL << 52;
+ }
+ if (!ey) {
+ for (i = uy.i<<12; i>>63 == 0; ey--, i <<= 1);
+ uy.i <<= -ey + 1;
+ } else {
+ uy.i &= -1ULL >> 12;
+ uy.i |= 1ULL << 52;
+ }
+
+ /* x mod y */
+ for (; ex > ey; ex--) {
+ i = uxi - uy.i;
+ if (i >> 63 == 0) {
+ if (i == 0)
+ return 0*x;
+ uxi = i;
+ }
+ uxi <<= 1;
+ }
+ i = uxi - uy.i;
+ if (i >> 63 == 0) {
+ if (i == 0)
+ return 0*x;
+ uxi = i;
+ }
+ for (; uxi>>52 == 0; uxi <<= 1, ex--);
+
+ /* scale result */
+ if (ex > 0) {
+ uxi -= 1ULL << 52;
+ uxi |= (uint64_t)ex << 52;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ uxi |= (uint64_t)sx << 63;
+ ux.i = uxi;
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmodf.c b/lib/mlibc/options/ansi/musl-generic-math/fmodf.c
new file mode 100644
index 0000000..ff58f93
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmodf.c
@@ -0,0 +1,65 @@
+#include <math.h>
+#include <stdint.h>
+
+float fmodf(float x, float y)
+{
+ union {float f; uint32_t i;} ux = {x}, uy = {y};
+ int ex = ux.i>>23 & 0xff;
+ int ey = uy.i>>23 & 0xff;
+ uint32_t sx = ux.i & 0x80000000;
+ uint32_t i;
+ uint32_t uxi = ux.i;
+
+ if (uy.i<<1 == 0 || isnan(y) || ex == 0xff)
+ return (x*y)/(x*y);
+ if (uxi<<1 <= uy.i<<1) {
+ if (uxi<<1 == uy.i<<1)
+ return 0*x;
+ return x;
+ }
+
+ /* normalize x and y */
+ if (!ex) {
+ for (i = uxi<<9; i>>31 == 0; ex--, i <<= 1);
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= -1U >> 9;
+ uxi |= 1U << 23;
+ }
+ if (!ey) {
+ for (i = uy.i<<9; i>>31 == 0; ey--, i <<= 1);
+ uy.i <<= -ey + 1;
+ } else {
+ uy.i &= -1U >> 9;
+ uy.i |= 1U << 23;
+ }
+
+ /* x mod y */
+ for (; ex > ey; ex--) {
+ i = uxi - uy.i;
+ if (i >> 31 == 0) {
+ if (i == 0)
+ return 0*x;
+ uxi = i;
+ }
+ uxi <<= 1;
+ }
+ i = uxi - uy.i;
+ if (i >> 31 == 0) {
+ if (i == 0)
+ return 0*x;
+ uxi = i;
+ }
+ for (; uxi>>23 == 0; uxi <<= 1, ex--);
+
+ /* scale result up */
+ if (ex > 0) {
+ uxi -= 1U << 23;
+ uxi |= (uint32_t)ex << 23;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ uxi |= sx;
+ ux.i = uxi;
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmodl.c b/lib/mlibc/options/ansi/musl-generic-math/fmodl.c
new file mode 100644
index 0000000..9f5b873
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/fmodl.c
@@ -0,0 +1,105 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double fmodl(long double x, long double y)
+{
+ return fmod(x, y);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double fmodl(long double x, long double y)
+{
+ union ldshape ux = {x}, uy = {y};
+ int ex = ux.i.se & 0x7fff;
+ int ey = uy.i.se & 0x7fff;
+ int sx = ux.i.se & 0x8000;
+
+ if (y == 0 || isnan(y) || ex == 0x7fff)
+ return (x*y)/(x*y);
+ ux.i.se = ex;
+ uy.i.se = ey;
+ if (ux.f <= uy.f) {
+ if (ux.f == uy.f)
+ return 0*x;
+ return x;
+ }
+
+ /* normalize x and y */
+ if (!ex) {
+ ux.f *= 0x1p120f;
+ ex = ux.i.se - 120;
+ }
+ if (!ey) {
+ uy.f *= 0x1p120f;
+ ey = uy.i.se - 120;
+ }
+
+ /* x mod y */
+#if LDBL_MANT_DIG == 64
+ uint64_t i, mx, my;
+ mx = ux.i.m;
+ my = uy.i.m;
+ for (; ex > ey; ex--) {
+ i = mx - my;
+ if (mx >= my) {
+ if (i == 0)
+ return 0*x;
+ mx = 2*i;
+ } else if (2*mx < mx) {
+ mx = 2*mx - my;
+ } else {
+ mx = 2*mx;
+ }
+ }
+ i = mx - my;
+ if (mx >= my) {
+ if (i == 0)
+ return 0*x;
+ mx = i;
+ }
+ for (; mx >> 63 == 0; mx *= 2, ex--);
+ ux.i.m = mx;
+#elif LDBL_MANT_DIG == 113
+ uint64_t hi, lo, xhi, xlo, yhi, ylo;
+ xhi = (ux.i2.hi & -1ULL>>16) | 1ULL<<48;
+ yhi = (uy.i2.hi & -1ULL>>16) | 1ULL<<48;
+ xlo = ux.i2.lo;
+ ylo = uy.i2.lo;
+ for (; ex > ey; ex--) {
+ hi = xhi - yhi;
+ lo = xlo - ylo;
+ if (xlo < ylo)
+ hi -= 1;
+ if (hi >> 63 == 0) {
+ if ((hi|lo) == 0)
+ return 0*x;
+ xhi = 2*hi + (lo>>63);
+ xlo = 2*lo;
+ } else {
+ xhi = 2*xhi + (xlo>>63);
+ xlo = 2*xlo;
+ }
+ }
+ hi = xhi - yhi;
+ lo = xlo - ylo;
+ if (xlo < ylo)
+ hi -= 1;
+ if (hi >> 63 == 0) {
+ if ((hi|lo) == 0)
+ return 0*x;
+ xhi = hi;
+ xlo = lo;
+ }
+ for (; xhi >> 48 == 0; xhi = 2*xhi + (xlo>>63), xlo = 2*xlo, ex--);
+ ux.i2.hi = xhi;
+ ux.i2.lo = xlo;
+#endif
+
+ /* scale result */
+ if (ex <= 0) {
+ ux.i.se = (ex+120)|sx;
+ ux.f *= 0x1p-120f;
+ } else
+ ux.i.se = ex|sx;
+ return ux.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/frexp.c b/lib/mlibc/options/ansi/musl-generic-math/frexp.c
new file mode 100644
index 0000000..27b6266
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/frexp.c
@@ -0,0 +1,23 @@
+#include <math.h>
+#include <stdint.h>
+
+double frexp(double x, int *e)
+{
+ union { double d; uint64_t i; } y = { x };
+ int ee = y.i>>52 & 0x7ff;
+
+ if (!ee) {
+ if (x) {
+ x = frexp(x*0x1p64, e);
+ *e -= 64;
+ } else *e = 0;
+ return x;
+ } else if (ee == 0x7ff) {
+ return x;
+ }
+
+ *e = ee - 0x3fe;
+ y.i &= 0x800fffffffffffffull;
+ y.i |= 0x3fe0000000000000ull;
+ return y.d;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/frexpf.c b/lib/mlibc/options/ansi/musl-generic-math/frexpf.c
new file mode 100644
index 0000000..0787097
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/frexpf.c
@@ -0,0 +1,23 @@
+#include <math.h>
+#include <stdint.h>
+
+float frexpf(float x, int *e)
+{
+ union { float f; uint32_t i; } y = { x };
+ int ee = y.i>>23 & 0xff;
+
+ if (!ee) {
+ if (x) {
+ x = frexpf(x*0x1p64, e);
+ *e -= 64;
+ } else *e = 0;
+ return x;
+ } else if (ee == 0xff) {
+ return x;
+ }
+
+ *e = ee - 0x7e;
+ y.i &= 0x807ffffful;
+ y.i |= 0x3f000000ul;
+ return y.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/frexpl.c b/lib/mlibc/options/ansi/musl-generic-math/frexpl.c
new file mode 100644
index 0000000..3c1b553
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/frexpl.c
@@ -0,0 +1,29 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double frexpl(long double x, int *e)
+{
+ return frexp(x, e);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double frexpl(long double x, int *e)
+{
+ union ldshape u = {x};
+ int ee = u.i.se & 0x7fff;
+
+ if (!ee) {
+ if (x) {
+ x = frexpl(x*0x1p120, e);
+ *e -= 120;
+ } else *e = 0;
+ return x;
+ } else if (ee == 0x7fff) {
+ return x;
+ }
+
+ *e = ee - 0x3ffe;
+ u.i.se &= 0x8000;
+ u.i.se |= 0x3ffe;
+ return u.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/hypot.c b/lib/mlibc/options/ansi/musl-generic-math/hypot.c
new file mode 100644
index 0000000..6071bf1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/hypot.c
@@ -0,0 +1,67 @@
+#include <math.h>
+#include <stdint.h>
+#include <float.h>
+
+#if FLT_EVAL_METHOD > 1U && LDBL_MANT_DIG == 64
+#define SPLIT (0x1p32 + 1)
+#else
+#define SPLIT (0x1p27 + 1)
+#endif
+
+static void sq(double_t *hi, double_t *lo, double x)
+{
+ double_t xh, xl, xc;
+
+ xc = (double_t)x*SPLIT;
+ xh = x - xc + xc;
+ xl = x - xh;
+ *hi = (double_t)x*x;
+ *lo = xh*xh - *hi + 2*xh*xl + xl*xl;
+}
+
+double hypot(double x, double y)
+{
+ union {double f; uint64_t i;} ux = {x}, uy = {y}, ut;
+ int ex, ey;
+ double_t hx, lx, hy, ly, z;
+
+ /* arrange |x| >= |y| */
+ ux.i &= -1ULL>>1;
+ uy.i &= -1ULL>>1;
+ if (ux.i < uy.i) {
+ ut = ux;
+ ux = uy;
+ uy = ut;
+ }
+
+ /* special cases */
+ ex = ux.i>>52;
+ ey = uy.i>>52;
+ x = ux.f;
+ y = uy.f;
+ /* note: hypot(inf,nan) == inf */
+ if (ey == 0x7ff)
+ return y;
+ if (ex == 0x7ff || uy.i == 0)
+ return x;
+ /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
+ /* 64 difference is enough for ld80 double_t */
+ if (ex - ey > 64)
+ return x + y;
+
+ /* precise sqrt argument in nearest rounding mode without overflow */
+ /* xh*xh must not overflow and xl*xl must not underflow in sq */
+ z = 1;
+ if (ex > 0x3ff+510) {
+ z = 0x1p700;
+ x *= 0x1p-700;
+ y *= 0x1p-700;
+ } else if (ey < 0x3ff-450) {
+ z = 0x1p-700;
+ x *= 0x1p700;
+ y *= 0x1p700;
+ }
+ sq(&hx, &lx, x);
+ sq(&hy, &ly, y);
+ return z*sqrt(ly+lx+hy+hx);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/hypotf.c b/lib/mlibc/options/ansi/musl-generic-math/hypotf.c
new file mode 100644
index 0000000..2fc214b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/hypotf.c
@@ -0,0 +1,35 @@
+#include <math.h>
+#include <stdint.h>
+
+float hypotf(float x, float y)
+{
+ union {float f; uint32_t i;} ux = {x}, uy = {y}, ut;
+ float_t z;
+
+ ux.i &= -1U>>1;
+ uy.i &= -1U>>1;
+ if (ux.i < uy.i) {
+ ut = ux;
+ ux = uy;
+ uy = ut;
+ }
+
+ x = ux.f;
+ y = uy.f;
+ if (uy.i == 0xff<<23)
+ return y;
+ if (ux.i >= 0xff<<23 || uy.i == 0 || ux.i - uy.i >= 25<<23)
+ return x + y;
+
+ z = 1;
+ if (ux.i >= (0x7f+60)<<23) {
+ z = 0x1p90f;
+ x *= 0x1p-90f;
+ y *= 0x1p-90f;
+ } else if (uy.i < (0x7f-60)<<23) {
+ z = 0x1p-90f;
+ x *= 0x1p90f;
+ y *= 0x1p90f;
+ }
+ return z*sqrtf((double)x*x + (double)y*y);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/hypotl.c b/lib/mlibc/options/ansi/musl-generic-math/hypotl.c
new file mode 100644
index 0000000..479aa92
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/hypotl.c
@@ -0,0 +1,66 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double hypotl(long double x, long double y)
+{
+ return hypot(x, y);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+#if LDBL_MANT_DIG == 64
+#define SPLIT (0x1p32L+1)
+#elif LDBL_MANT_DIG == 113
+#define SPLIT (0x1p57L+1)
+#endif
+
+static void sq(long double *hi, long double *lo, long double x)
+{
+ long double xh, xl, xc;
+ xc = x*SPLIT;
+ xh = x - xc + xc;
+ xl = x - xh;
+ *hi = x*x;
+ *lo = xh*xh - *hi + 2*xh*xl + xl*xl;
+}
+
+long double hypotl(long double x, long double y)
+{
+ union ldshape ux = {x}, uy = {y};
+ int ex, ey;
+ long double hx, lx, hy, ly, z;
+
+ ux.i.se &= 0x7fff;
+ uy.i.se &= 0x7fff;
+ if (ux.i.se < uy.i.se) {
+ ex = uy.i.se;
+ ey = ux.i.se;
+ x = uy.f;
+ y = ux.f;
+ } else {
+ ex = ux.i.se;
+ ey = uy.i.se;
+ x = ux.f;
+ y = uy.f;
+ }
+
+ if (ex == 0x7fff && isinf(y))
+ return y;
+ if (ex == 0x7fff || y == 0)
+ return x;
+ if (ex - ey > LDBL_MANT_DIG)
+ return x + y;
+
+ z = 1;
+ if (ex > 0x3fff+8000) {
+ z = 0x1p10000L;
+ x *= 0x1p-10000L;
+ y *= 0x1p-10000L;
+ } else if (ey < 0x3fff-8000) {
+ z = 0x1p-10000L;
+ x *= 0x1p10000L;
+ y *= 0x1p10000L;
+ }
+ sq(&hx, &lx, x);
+ sq(&hy, &ly, y);
+ return z*sqrtl(ly+lx+hy+hx);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ilogb.c b/lib/mlibc/options/ansi/musl-generic-math/ilogb.c
new file mode 100644
index 0000000..64d4015
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ilogb.c
@@ -0,0 +1,26 @@
+#include <limits.h>
+#include "libm.h"
+
+int ilogb(double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ union {double f; uint64_t i;} u = {x};
+ uint64_t i = u.i;
+ int e = i>>52 & 0x7ff;
+
+ if (!e) {
+ i <<= 12;
+ if (i == 0) {
+ FORCE_EVAL(0/0.0f);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ for (e = -0x3ff; i>>63 == 0; e--, i<<=1);
+ return e;
+ }
+ if (e == 0x7ff) {
+ FORCE_EVAL(0/0.0f);
+ return i<<12 ? FP_ILOGBNAN : INT_MAX;
+ }
+ return e - 0x3ff;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ilogbf.c b/lib/mlibc/options/ansi/musl-generic-math/ilogbf.c
new file mode 100644
index 0000000..e23ba20
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ilogbf.c
@@ -0,0 +1,26 @@
+#include <limits.h>
+#include "libm.h"
+
+int ilogbf(float x)
+{
+ #pragma STDC FENV_ACCESS ON
+ union {float f; uint32_t i;} u = {x};
+ uint32_t i = u.i;
+ int e = i>>23 & 0xff;
+
+ if (!e) {
+ i <<= 9;
+ if (i == 0) {
+ FORCE_EVAL(0/0.0f);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ for (e = -0x7f; i>>31 == 0; e--, i<<=1);
+ return e;
+ }
+ if (e == 0xff) {
+ FORCE_EVAL(0/0.0f);
+ return i<<9 ? FP_ILOGBNAN : INT_MAX;
+ }
+ return e - 0x7f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ilogbl.c b/lib/mlibc/options/ansi/musl-generic-math/ilogbl.c
new file mode 100644
index 0000000..7b1a9cf
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ilogbl.c
@@ -0,0 +1,55 @@
+#include <limits.h>
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+int ilogbl(long double x)
+{
+ return ilogb(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+int ilogbl(long double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ union ldshape u = {x};
+ uint64_t m = u.i.m;
+ int e = u.i.se & 0x7fff;
+
+ if (!e) {
+ if (m == 0) {
+ FORCE_EVAL(0/0.0f);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ for (e = -0x3fff+1; m>>63 == 0; e--, m<<=1);
+ return e;
+ }
+ if (e == 0x7fff) {
+ FORCE_EVAL(0/0.0f);
+ return m<<1 ? FP_ILOGBNAN : INT_MAX;
+ }
+ return e - 0x3fff;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+int ilogbl(long double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+
+ if (!e) {
+ if (x == 0) {
+ FORCE_EVAL(0/0.0f);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ x *= 0x1p120;
+ return ilogbl(x) - 120;
+ }
+ if (e == 0x7fff) {
+ FORCE_EVAL(0/0.0f);
+ u.i.se = 0;
+ return u.f ? FP_ILOGBNAN : INT_MAX;
+ }
+ return e - 0x3fff;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j0.c b/lib/mlibc/options/ansi/musl-generic-math/j0.c
new file mode 100644
index 0000000..d722d94
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/j0.c
@@ -0,0 +1,375 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j0(x), y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ * 2. Reduce x to |x| since j0(x)=j0(-x), and
+ * for x in (0,2)
+ * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
+ * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ * for x in (2,inf)
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * as follow:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (cos(x) + sin(x))
+ * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j0(nan)= nan
+ * j0(0) = 1
+ * j0(inf) = 0
+ *
+ * Method -- y0(x):
+ * 1. For x<2.
+ * Since
+ * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ * We use the following function to approximate y0,
+ * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ * where
+ * U(z) = u00 + u01*z + ... + u06*z^6
+ * V(z) = 1 + v01*z + ... + v04*z^4
+ * with absolute approximation error bounded by 2**-72.
+ * Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ * 2. For x>=2.
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * by the method mentioned above.
+ * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+#include "libm.h"
+
+static double pzero(double), qzero(double);
+
+static const double
+invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+/* common method when |x|>=2 */
+static double common(uint32_t ix, double x, int y0)
+{
+ double s,c,ss,cc,z;
+
+ /*
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
+ *
+ * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
+ * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ */
+ s = sin(x);
+ c = cos(x);
+ if (y0)
+ c = -c;
+ cc = s+c;
+ /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
+ if (ix < 0x7fe00000) {
+ ss = s-c;
+ z = -cos(2*x);
+ if (s*c < 0)
+ cc = z/ss;
+ else
+ ss = z/cc;
+ if (ix < 0x48000000) {
+ if (y0)
+ ss = -ss;
+ cc = pzero(x)*cc-qzero(x)*ss;
+ }
+ }
+ return invsqrtpi*cc/sqrt(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+static const double
+R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
+R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
+R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
+R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
+S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
+S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
+S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
+S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
+
+double j0(double x)
+{
+ double z,r,s;
+ uint32_t ix;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+
+ /* j0(+-inf)=0, j0(nan)=nan */
+ if (ix >= 0x7ff00000)
+ return 1/(x*x);
+ x = fabs(x);
+
+ if (ix >= 0x40000000) { /* |x| >= 2 */
+ /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
+ return common(ix,x,0);
+ }
+
+ /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
+ if (ix >= 0x3f200000) { /* |x| >= 2**-13 */
+ /* up to 4ulp error close to 2 */
+ z = x*x;
+ r = z*(R02+z*(R03+z*(R04+z*R05)));
+ s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
+ return (1+x/2)*(1-x/2) + z*(r/s);
+ }
+
+ /* 1 - x*x/4 */
+ /* prevent underflow */
+ /* inexact should be raised when x!=0, this is not done correctly */
+ if (ix >= 0x38000000) /* |x| >= 2**-127 */
+ x = 0.25*x*x;
+ return 1 - x;
+}
+
+static const double
+u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
+u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
+u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
+u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
+u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
+u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
+u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
+v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
+v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
+v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
+v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
+
+double y0(double x)
+{
+ double z,u,v;
+ uint32_t ix,lx;
+
+ EXTRACT_WORDS(ix, lx, x);
+
+ /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
+ if ((ix<<1 | lx) == 0)
+ return -1/0.0;
+ if (ix>>31)
+ return 0/0.0;
+ if (ix >= 0x7ff00000)
+ return 1/x;
+
+ if (ix >= 0x40000000) { /* x >= 2 */
+ /* large ulp errors near zeros: 3.958, 7.086,.. */
+ return common(ix,x,1);
+ }
+
+ /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
+ if (ix >= 0x3e400000) { /* x >= 2**-27 */
+ /* large ulp error near the first zero, x ~= 0.89 */
+ z = x*x;
+ u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+ v = 1.0+z*(v01+z*(v02+z*(v03+z*v04)));
+ return u/v + tpi*(j0(x)*log(x));
+ }
+ return u00 + tpi*log(x);
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+};
+static const double pS8[5] = {
+ 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+ 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+ 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+ 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+ 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+};
+
+static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+};
+static const double pS5[5] = {
+ 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+ 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+ 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+ 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+ 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+};
+
+static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+};
+static const double pS3[5] = {
+ 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+ 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+ 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+ 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+ 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+};
+
+static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+};
+static const double pS2[5] = {
+ 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+ 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+ 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+ 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+ 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+};
+
+static double pzero(double x)
+{
+ const double *p,*q;
+ double_t z,r,s;
+ uint32_t ix;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x40200000){p = pR8; q = pS8;}
+ else if (ix >= 0x40122E8B){p = pR5; q = pS5;}
+ else if (ix >= 0x4006DB6D){p = pR3; q = pS3;}
+ else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
+ z = 1.0/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return 1.0 + r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+ 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+ 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+ 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+ 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+};
+static const double qS8[6] = {
+ 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
+ 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
+ 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
+ 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
+ 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
+ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+};
+
+static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+ 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+ 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+ 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+ 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+ 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+};
+static const double qS5[6] = {
+ 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
+ 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
+ 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
+ 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
+ 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
+ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+};
+
+static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+ 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+ 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+ 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+ 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+ 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+};
+static const double qS3[6] = {
+ 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
+ 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
+ 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
+ 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
+ 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
+ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+};
+
+static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+ 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+ 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+ 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+ 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+ 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+};
+static const double qS2[6] = {
+ 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
+ 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
+ 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
+ 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
+ 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
+ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+};
+
+static double qzero(double x)
+{
+ const double *p,*q;
+ double_t s,r,z;
+ uint32_t ix;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x40200000){p = qR8; q = qS8;}
+ else if (ix >= 0x40122E8B){p = qR5; q = qS5;}
+ else if (ix >= 0x4006DB6D){p = qR3; q = qS3;}
+ else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
+ z = 1.0/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (-.125 + r/s)/x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j0f.c b/lib/mlibc/options/ansi/musl-generic-math/j0f.c
new file mode 100644
index 0000000..fab554a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/j0f.c
@@ -0,0 +1,314 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+static float pzerof(float), qzerof(float);
+
+static const float
+invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
+tpi = 6.3661974669e-01; /* 0x3f22f983 */
+
+static float common(uint32_t ix, float x, int y0)
+{
+ float z,s,c,ss,cc;
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ s = sinf(x);
+ c = cosf(x);
+ if (y0)
+ c = -c;
+ cc = s+c;
+ if (ix < 0x7f000000) {
+ ss = s-c;
+ z = -cosf(2*x);
+ if (s*c < 0)
+ cc = z/ss;
+ else
+ ss = z/cc;
+ if (ix < 0x58800000) {
+ if (y0)
+ ss = -ss;
+ cc = pzerof(x)*cc-qzerof(x)*ss;
+ }
+ }
+ return invsqrtpi*cc/sqrtf(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+static const float
+R02 = 1.5625000000e-02, /* 0x3c800000 */
+R03 = -1.8997929874e-04, /* 0xb947352e */
+R04 = 1.8295404516e-06, /* 0x35f58e88 */
+R05 = -4.6183270541e-09, /* 0xb19eaf3c */
+S01 = 1.5619102865e-02, /* 0x3c7fe744 */
+S02 = 1.1692678527e-04, /* 0x38f53697 */
+S03 = 5.1354652442e-07, /* 0x3509daa6 */
+S04 = 1.1661400734e-09; /* 0x30a045e8 */
+
+float j0f(float x)
+{
+ float z,r,s;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x7f800000)
+ return 1/(x*x);
+ x = fabsf(x);
+
+ if (ix >= 0x40000000) { /* |x| >= 2 */
+ /* large ulp error near zeros */
+ return common(ix, x, 0);
+ }
+ if (ix >= 0x3a000000) { /* |x| >= 2**-11 */
+ /* up to 4ulp error near 2 */
+ z = x*x;
+ r = z*(R02+z*(R03+z*(R04+z*R05)));
+ s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
+ return (1+x/2)*(1-x/2) + z*(r/s);
+ }
+ if (ix >= 0x21800000) /* |x| >= 2**-60 */
+ x = 0.25f*x*x;
+ return 1 - x;
+}
+
+static const float
+u00 = -7.3804296553e-02, /* 0xbd9726b5 */
+u01 = 1.7666645348e-01, /* 0x3e34e80d */
+u02 = -1.3818567619e-02, /* 0xbc626746 */
+u03 = 3.4745343146e-04, /* 0x39b62a69 */
+u04 = -3.8140706238e-06, /* 0xb67ff53c */
+u05 = 1.9559013964e-08, /* 0x32a802ba */
+u06 = -3.9820518410e-11, /* 0xae2f21eb */
+v01 = 1.2730483897e-02, /* 0x3c509385 */
+v02 = 7.6006865129e-05, /* 0x389f65e0 */
+v03 = 2.5915085189e-07, /* 0x348b216c */
+v04 = 4.4111031494e-10; /* 0x2ff280c2 */
+
+float y0f(float x)
+{
+ float z,u,v;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ if ((ix & 0x7fffffff) == 0)
+ return -1/0.0f;
+ if (ix>>31)
+ return 0/0.0f;
+ if (ix >= 0x7f800000)
+ return 1/x;
+ if (ix >= 0x40000000) { /* |x| >= 2.0 */
+ /* large ulp error near zeros */
+ return common(ix,x,1);
+ }
+ if (ix >= 0x39000000) { /* x >= 2**-13 */
+ /* large ulp error at x ~= 0.89 */
+ z = x*x;
+ u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+ v = 1+z*(v01+z*(v02+z*(v03+z*v04)));
+ return u/v + tpi*(j0f(x)*logf(x));
+ }
+ return u00 + tpi*logf(x);
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+};
+static const float pS8[5] = {
+ 1.1653436279e+02, /* 0x42e91198 */
+ 3.8337448730e+03, /* 0x456f9beb */
+ 4.0597855469e+04, /* 0x471e95db */
+ 1.1675296875e+05, /* 0x47e4087c */
+ 4.7627726562e+04, /* 0x473a0bba */
+};
+static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+};
+static const float pS5[5] = {
+ 6.0753936768e+01, /* 0x42730408 */
+ 1.0512523193e+03, /* 0x44836813 */
+ 5.9789707031e+03, /* 0x45bad7c4 */
+ 9.6254453125e+03, /* 0x461665c8 */
+ 2.4060581055e+03, /* 0x451660ee */
+};
+
+static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+};
+static const float pS3[5] = {
+ 3.5856033325e+01, /* 0x420f6c94 */
+ 3.6151397705e+02, /* 0x43b4c1ca */
+ 1.1936077881e+03, /* 0x44953373 */
+ 1.1279968262e+03, /* 0x448cffe6 */
+ 1.7358093262e+02, /* 0x432d94b8 */
+};
+
+static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+};
+static const float pS2[5] = {
+ 2.2220300674e+01, /* 0x41b1c32d */
+ 1.3620678711e+02, /* 0x430834f0 */
+ 2.7047027588e+02, /* 0x43873c32 */
+ 1.5387539673e+02, /* 0x4319e01a */
+ 1.4657617569e+01, /* 0x416a859a */
+};
+
+static float pzerof(float x)
+{
+ const float *p,*q;
+ float_t z,r,s;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = pR8; q = pS8;}
+ else if (ix >= 0x409173eb){p = pR5; q = pS5;}
+ else if (ix >= 0x4036d917){p = pR3; q = pS3;}
+ else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return 1.0f + r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ 7.3242187500e-02, /* 0x3d960000 */
+ 1.1768206596e+01, /* 0x413c4a93 */
+ 5.5767340088e+02, /* 0x440b6b19 */
+ 8.8591972656e+03, /* 0x460a6cca */
+ 3.7014625000e+04, /* 0x471096a0 */
+};
+static const float qS8[6] = {
+ 1.6377603149e+02, /* 0x4323c6aa */
+ 8.0983447266e+03, /* 0x45fd12c2 */
+ 1.4253829688e+05, /* 0x480b3293 */
+ 8.0330925000e+05, /* 0x49441ed4 */
+ 8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+};
+
+static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.8408595828e-11, /* 0x2da1ec79 */
+ 7.3242180049e-02, /* 0x3d95ffff */
+ 5.8356351852e+00, /* 0x40babd86 */
+ 1.3511157227e+02, /* 0x43071c90 */
+ 1.0272437744e+03, /* 0x448067cd */
+ 1.9899779053e+03, /* 0x44f8bf4b */
+};
+static const float qS5[6] = {
+ 8.2776611328e+01, /* 0x42a58da0 */
+ 2.0778142090e+03, /* 0x4501dd07 */
+ 1.8847289062e+04, /* 0x46933e94 */
+ 5.6751113281e+04, /* 0x475daf1d */
+ 3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+};
+
+static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.3774099900e-09, /* 0x3196681b */
+ 7.3241114616e-02, /* 0x3d95ff70 */
+ 3.3442313671e+00, /* 0x405607e3 */
+ 4.2621845245e+01, /* 0x422a7cc5 */
+ 1.7080809021e+02, /* 0x432acedf */
+ 1.6673394775e+02, /* 0x4326bbe4 */
+};
+static const float qS3[6] = {
+ 4.8758872986e+01, /* 0x42430916 */
+ 7.0968920898e+02, /* 0x44316c1c */
+ 3.7041481934e+03, /* 0x4567825f */
+ 6.4604252930e+03, /* 0x45c9e367 */
+ 2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+};
+
+static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.5044444979e-07, /* 0x342189db */
+ 7.3223426938e-02, /* 0x3d95f62a */
+ 1.9981917143e+00, /* 0x3fffc4bf */
+ 1.4495602608e+01, /* 0x4167edfd */
+ 3.1666231155e+01, /* 0x41fd5471 */
+ 1.6252708435e+01, /* 0x4182058c */
+};
+static const float qS2[6] = {
+ 3.0365585327e+01, /* 0x41f2ecb8 */
+ 2.6934811401e+02, /* 0x4386ac8f */
+ 8.4478375244e+02, /* 0x44533229 */
+ 8.8293585205e+02, /* 0x445cbbe5 */
+ 2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+};
+
+static float qzerof(float x)
+{
+ const float *p,*q;
+ float_t s,r,z;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = qR8; q = qS8;}
+ else if (ix >= 0x409173eb){p = qR5; q = qS5;}
+ else if (ix >= 0x4036d917){p = qR3; q = qS3;}
+ else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (-.125f + r/s)/x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j1.c b/lib/mlibc/options/ansi/musl-generic-math/j1.c
new file mode 100644
index 0000000..df724d1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/j1.c
@@ -0,0 +1,362 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j1(x), y1(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ * 2. Reduce x to |x| since j1(x)=-j1(-x), and
+ * for x in (0,2)
+ * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
+ * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ * for x in (2,inf)
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * as follow:
+ * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (sin(x) + cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j1(nan)= nan
+ * j1(0) = 0
+ * j1(inf) = 0
+ *
+ * Method -- y1(x):
+ * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ * 2. For x<2.
+ * Since
+ * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ * We use the following function to approximate y1,
+ * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ * where for x in [0,2] (abs err less than 2**-65.89)
+ * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
+ * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
+ * Note: For tiny x, 1/x dominate y1 and hence
+ * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ * 3. For x>=2.
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * by method mentioned above.
+ */
+
+#include "libm.h"
+
+static double pone(double), qone(double);
+
+static const double
+invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+static double common(uint32_t ix, double x, int y1, int sign)
+{
+ double z,s,c,ss,cc;
+
+ /*
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
+ *
+ * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
+ * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ */
+ s = sin(x);
+ if (y1)
+ s = -s;
+ c = cos(x);
+ cc = s-c;
+ if (ix < 0x7fe00000) {
+ /* avoid overflow in 2*x */
+ ss = -s-c;
+ z = cos(2*x);
+ if (s*c > 0)
+ cc = z/ss;
+ else
+ ss = z/cc;
+ if (ix < 0x48000000) {
+ if (y1)
+ ss = -ss;
+ cc = pone(x)*cc-qone(x)*ss;
+ }
+ }
+ if (sign)
+ cc = -cc;
+ return invsqrtpi*cc/sqrt(x);
+}
+
+/* R0/S0 on [0,2] */
+static const double
+r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
+r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
+r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
+r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
+s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
+s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
+s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
+s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
+s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
+
+double j1(double x)
+{
+ double z,r,s;
+ uint32_t ix;
+ int sign;
+
+ GET_HIGH_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7ff00000)
+ return 1/(x*x);
+ if (ix >= 0x40000000) /* |x| >= 2 */
+ return common(ix, fabs(x), 0, sign);
+ if (ix >= 0x38000000) { /* |x| >= 2**-127 */
+ z = x*x;
+ r = z*(r00+z*(r01+z*(r02+z*r03)));
+ s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+ z = r/s;
+ } else
+ /* avoid underflow, raise inexact if x!=0 */
+ z = x;
+ return (0.5 + z)*x;
+}
+
+static const double U0[5] = {
+ -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+ 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
+ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+ 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
+ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+};
+static const double V0[5] = {
+ 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+ 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+ 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+ 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+ 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+};
+
+double y1(double x)
+{
+ double z,u,v;
+ uint32_t ix,lx;
+
+ EXTRACT_WORDS(ix, lx, x);
+ /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
+ if ((ix<<1 | lx) == 0)
+ return -1/0.0;
+ if (ix>>31)
+ return 0/0.0;
+ if (ix >= 0x7ff00000)
+ return 1/x;
+
+ if (ix >= 0x40000000) /* x >= 2 */
+ return common(ix, x, 1, 0);
+ if (ix < 0x3c900000) /* x < 2**-54 */
+ return -tpi/x;
+ z = x*x;
+ u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+ v = 1+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+ return x*(u/v) + tpi*(j1(x)*log(x)-1/x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+ 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+ 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+ 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+ 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+};
+static const double ps8[5] = {
+ 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+ 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+ 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+ 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+ 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+};
+
+static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+ 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+ 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+ 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+ 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+ 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+};
+static const double ps5[5] = {
+ 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+ 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+ 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+ 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+ 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+};
+
+static const double pr3[6] = {
+ 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+ 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+ 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+ 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+ 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+ 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+};
+static const double ps3[5] = {
+ 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+ 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+ 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+ 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+ 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+};
+
+static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+ 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+ 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+ 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+ 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+ 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+};
+static const double ps2[5] = {
+ 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+ 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+ 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+ 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+ 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+};
+
+static double pone(double x)
+{
+ const double *p,*q;
+ double_t z,r,s;
+ uint32_t ix;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x40200000){p = pr8; q = ps8;}
+ else if (ix >= 0x40122E8B){p = pr5; q = ps5;}
+ else if (ix >= 0x4006DB6D){p = pr3; q = ps3;}
+ else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
+ z = 1.0/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return 1.0+ r/s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+ -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+};
+static const double qs8[6] = {
+ 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
+ 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
+ 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
+ 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
+ 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
+ -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+};
+
+static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+ -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+};
+static const double qs5[6] = {
+ 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
+ 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
+ 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
+ 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
+ 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
+ -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+};
+
+static const double qr3[6] = {
+ -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+ -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+};
+static const double qs3[6] = {
+ 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
+ 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
+ 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
+ 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
+ 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
+ -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+};
+
+static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+ -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+};
+static const double qs2[6] = {
+ 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
+ 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
+ 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
+ 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
+ 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
+ -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+};
+
+static double qone(double x)
+{
+ const double *p,*q;
+ double_t s,r,z;
+ uint32_t ix;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x40200000){p = qr8; q = qs8;}
+ else if (ix >= 0x40122E8B){p = qr5; q = qs5;}
+ else if (ix >= 0x4006DB6D){p = qr3; q = qs3;}
+ else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
+ z = 1.0/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (.375 + r/s)/x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j1f.c b/lib/mlibc/options/ansi/musl-generic-math/j1f.c
new file mode 100644
index 0000000..3434c53
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/j1f.c
@@ -0,0 +1,310 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+static float ponef(float), qonef(float);
+
+static const float
+invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
+tpi = 6.3661974669e-01; /* 0x3f22f983 */
+
+static float common(uint32_t ix, float x, int y1, int sign)
+{
+ double z,s,c,ss,cc;
+
+ s = sinf(x);
+ if (y1)
+ s = -s;
+ c = cosf(x);
+ cc = s-c;
+ if (ix < 0x7f000000) {
+ ss = -s-c;
+ z = cosf(2*x);
+ if (s*c > 0)
+ cc = z/ss;
+ else
+ ss = z/cc;
+ if (ix < 0x58800000) {
+ if (y1)
+ ss = -ss;
+ cc = ponef(x)*cc-qonef(x)*ss;
+ }
+ }
+ if (sign)
+ cc = -cc;
+ return invsqrtpi*cc/sqrtf(x);
+}
+
+/* R0/S0 on [0,2] */
+static const float
+r00 = -6.2500000000e-02, /* 0xbd800000 */
+r01 = 1.4070566976e-03, /* 0x3ab86cfd */
+r02 = -1.5995563444e-05, /* 0xb7862e36 */
+r03 = 4.9672799207e-08, /* 0x335557d2 */
+s01 = 1.9153760746e-02, /* 0x3c9ce859 */
+s02 = 1.8594678841e-04, /* 0x3942fab6 */
+s03 = 1.1771846857e-06, /* 0x359dffc2 */
+s04 = 5.0463624390e-09, /* 0x31ad6446 */
+s05 = 1.2354227016e-11; /* 0x2d59567e */
+
+float j1f(float x)
+{
+ float z,r,s;
+ uint32_t ix;
+ int sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix >= 0x7f800000)
+ return 1/(x*x);
+ if (ix >= 0x40000000) /* |x| >= 2 */
+ return common(ix, fabsf(x), 0, sign);
+ if (ix >= 0x39000000) { /* |x| >= 2**-13 */
+ z = x*x;
+ r = z*(r00+z*(r01+z*(r02+z*r03)));
+ s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+ z = 0.5f + r/s;
+ } else
+ z = 0.5f;
+ return z*x;
+}
+
+static const float U0[5] = {
+ -1.9605709612e-01, /* 0xbe48c331 */
+ 5.0443872809e-02, /* 0x3d4e9e3c */
+ -1.9125689287e-03, /* 0xbafaaf2a */
+ 2.3525259166e-05, /* 0x37c5581c */
+ -9.1909917899e-08, /* 0xb3c56003 */
+};
+static const float V0[5] = {
+ 1.9916731864e-02, /* 0x3ca3286a */
+ 2.0255257550e-04, /* 0x3954644b */
+ 1.3560879779e-06, /* 0x35b602d4 */
+ 6.2274145840e-09, /* 0x31d5f8eb */
+ 1.6655924903e-11, /* 0x2d9281cf */
+};
+
+float y1f(float x)
+{
+ float z,u,v;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ if ((ix & 0x7fffffff) == 0)
+ return -1/0.0f;
+ if (ix>>31)
+ return 0/0.0f;
+ if (ix >= 0x7f800000)
+ return 1/x;
+ if (ix >= 0x40000000) /* |x| >= 2.0 */
+ return common(ix,x,1,0);
+ if (ix < 0x33000000) /* x < 2**-25 */
+ return -tpi/x;
+ z = x*x;
+ u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+ v = 1.0f+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+ return x*(u/v) + tpi*(j1f(x)*logf(x)-1.0f/x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ 1.1718750000e-01, /* 0x3df00000 */
+ 1.3239480972e+01, /* 0x4153d4ea */
+ 4.1205184937e+02, /* 0x43ce06a3 */
+ 3.8747453613e+03, /* 0x45722bed */
+ 7.9144794922e+03, /* 0x45f753d6 */
+};
+static const float ps8[5] = {
+ 1.1420736694e+02, /* 0x42e46a2c */
+ 3.6509309082e+03, /* 0x45642ee5 */
+ 3.6956207031e+04, /* 0x47105c35 */
+ 9.7602796875e+04, /* 0x47bea166 */
+ 3.0804271484e+04, /* 0x46f0a88b */
+};
+
+static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.3199052094e-11, /* 0x2d68333f */
+ 1.1718749255e-01, /* 0x3defffff */
+ 6.8027510643e+00, /* 0x40d9b023 */
+ 1.0830818176e+02, /* 0x42d89dca */
+ 5.1763616943e+02, /* 0x440168b7 */
+ 5.2871520996e+02, /* 0x44042dc6 */
+};
+static const float ps5[5] = {
+ 5.9280597687e+01, /* 0x426d1f55 */
+ 9.9140142822e+02, /* 0x4477d9b1 */
+ 5.3532670898e+03, /* 0x45a74a23 */
+ 7.8446904297e+03, /* 0x45f52586 */
+ 1.5040468750e+03, /* 0x44bc0180 */
+};
+
+static const float pr3[6] = {
+ 3.0250391081e-09, /* 0x314fe10d */
+ 1.1718686670e-01, /* 0x3defffab */
+ 3.9329774380e+00, /* 0x407bb5e7 */
+ 3.5119403839e+01, /* 0x420c7a45 */
+ 9.1055007935e+01, /* 0x42b61c2a */
+ 4.8559066772e+01, /* 0x42423c7c */
+};
+static const float ps3[5] = {
+ 3.4791309357e+01, /* 0x420b2a4d */
+ 3.3676245117e+02, /* 0x43a86198 */
+ 1.0468714600e+03, /* 0x4482dbe3 */
+ 8.9081134033e+02, /* 0x445eb3ed */
+ 1.0378793335e+02, /* 0x42cf936c */
+};
+
+static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.0771083225e-07, /* 0x33e74ea8 */
+ 1.1717621982e-01, /* 0x3deffa16 */
+ 2.3685150146e+00, /* 0x401795c0 */
+ 1.2242610931e+01, /* 0x4143e1bc */
+ 1.7693971634e+01, /* 0x418d8d41 */
+ 5.0735230446e+00, /* 0x40a25a4d */
+};
+static const float ps2[5] = {
+ 2.1436485291e+01, /* 0x41ab7dec */
+ 1.2529022980e+02, /* 0x42fa9499 */
+ 2.3227647400e+02, /* 0x436846c7 */
+ 1.1767937469e+02, /* 0x42eb5bd7 */
+ 8.3646392822e+00, /* 0x4105d590 */
+};
+
+static float ponef(float x)
+{
+ const float *p,*q;
+ float_t z,r,s;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = pr8; q = ps8;}
+ else if (ix >= 0x409173eb){p = pr5; q = ps5;}
+ else if (ix >= 0x4036d917){p = pr3; q = ps3;}
+ else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return 1.0f + r/s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ -1.0253906250e-01, /* 0xbdd20000 */
+ -1.6271753311e+01, /* 0xc1822c8d */
+ -7.5960174561e+02, /* 0xc43de683 */
+ -1.1849806641e+04, /* 0xc639273a */
+ -4.8438511719e+04, /* 0xc73d3683 */
+};
+static const float qs8[6] = {
+ 1.6139537048e+02, /* 0x43216537 */
+ 7.8253862305e+03, /* 0x45f48b17 */
+ 1.3387534375e+05, /* 0x4802bcd6 */
+ 7.1965775000e+05, /* 0x492fb29c */
+ 6.6660125000e+05, /* 0x4922be94 */
+ -2.9449025000e+05, /* 0xc88fcb48 */
+};
+
+static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -2.0897993405e-11, /* 0xadb7d219 */
+ -1.0253904760e-01, /* 0xbdd1fffe */
+ -8.0564479828e+00, /* 0xc100e736 */
+ -1.8366960144e+02, /* 0xc337ab6b */
+ -1.3731937256e+03, /* 0xc4aba633 */
+ -2.6124443359e+03, /* 0xc523471c */
+};
+static const float qs5[6] = {
+ 8.1276550293e+01, /* 0x42a28d98 */
+ 1.9917987061e+03, /* 0x44f8f98f */
+ 1.7468484375e+04, /* 0x468878f8 */
+ 4.9851425781e+04, /* 0x4742bb6d */
+ 2.7948074219e+04, /* 0x46da5826 */
+ -4.7191835938e+03, /* 0xc5937978 */
+};
+
+static const float qr3[6] = {
+ -5.0783124372e-09, /* 0xb1ae7d4f */
+ -1.0253783315e-01, /* 0xbdd1ff5b */
+ -4.6101160049e+00, /* 0xc0938612 */
+ -5.7847221375e+01, /* 0xc267638e */
+ -2.2824453735e+02, /* 0xc3643e9a */
+ -2.1921012878e+02, /* 0xc35b35cb */
+};
+static const float qs3[6] = {
+ 4.7665153503e+01, /* 0x423ea91e */
+ 6.7386511230e+02, /* 0x4428775e */
+ 3.3801528320e+03, /* 0x45534272 */
+ 5.5477290039e+03, /* 0x45ad5dd5 */
+ 1.9031191406e+03, /* 0x44ede3d0 */
+ -1.3520118713e+02, /* 0xc3073381 */
+};
+
+static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -1.7838172539e-07, /* 0xb43f8932 */
+ -1.0251704603e-01, /* 0xbdd1f475 */
+ -2.7522056103e+00, /* 0xc0302423 */
+ -1.9663616180e+01, /* 0xc19d4f16 */
+ -4.2325313568e+01, /* 0xc2294d1f */
+ -2.1371921539e+01, /* 0xc1aaf9b2 */
+};
+static const float qs2[6] = {
+ 2.9533363342e+01, /* 0x41ec4454 */
+ 2.5298155212e+02, /* 0x437cfb47 */
+ 7.5750280762e+02, /* 0x443d602e */
+ 7.3939318848e+02, /* 0x4438d92a */
+ 1.5594900513e+02, /* 0x431bf2f2 */
+ -4.9594988823e+00, /* 0xc09eb437 */
+};
+
+static float qonef(float x)
+{
+ const float *p,*q;
+ float_t s,r,z;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = qr8; q = qs8;}
+ else if (ix >= 0x409173eb){p = qr5; q = qs5;}
+ else if (ix >= 0x4036d917){p = qr3; q = qs3;}
+ else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (.375f + r/s)/x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/jn.c b/lib/mlibc/options/ansi/musl-generic-math/jn.c
new file mode 100644
index 0000000..4878a54
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/jn.c
@@ -0,0 +1,280 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * jn(n, x), yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ * For n=0, j0(x) is called,
+ * for n=1, j1(x) is called,
+ * for n<=x, forward recursion is used starting
+ * from values of j0(x) and j1(x).
+ * for n>x, a continued fraction approximation to
+ * j(n,x)/j(n-1,x) is evaluated and then backward
+ * recursion is used starting from a supposed value
+ * for j(n,x). The resulting value of j(0,x) is
+ * compared with the actual value to correct the
+ * supposed value of j(n,x).
+ *
+ * yn(n,x) is similar in all respects, except
+ * that forward recursion is used for all
+ * values of n>1.
+ */
+
+#include "libm.h"
+
+static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+
+double jn(int n, double x)
+{
+ uint32_t ix, lx;
+ int nm1, i, sign;
+ double a, b, temp;
+
+ EXTRACT_WORDS(ix, lx, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+
+ if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
+ return x;
+
+ /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+ * Thus, J(-n,x) = J(n,-x)
+ */
+ /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
+ if (n == 0)
+ return j0(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ x = -x;
+ sign ^= 1;
+ } else
+ nm1 = n-1;
+ if (nm1 == 0)
+ return j1(x);
+
+ sign &= n; /* even n: 0, odd n: signbit(x) */
+ x = fabs(x);
+ if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
+ b = 0.0;
+ else if (nm1 < x) {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x52d00000) { /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch(nm1&3) {
+ case 0: temp = -cos(x)+sin(x); break;
+ case 1: temp = -cos(x)-sin(x); break;
+ case 2: temp = cos(x)-sin(x); break;
+ default:
+ case 3: temp = cos(x)+sin(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = j0(x);
+ b = j1(x);
+ for (i=0; i<nm1; ) {
+ i++;
+ temp = b;
+ b = b*(2.0*i/x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ } else {
+ if (ix < 0x3e100000) { /* x < 2**-29 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (nm1 > 32) /* underflow */
+ b = 0.0;
+ else {
+ temp = x*0.5;
+ b = temp;
+ a = 1.0;
+ for (i=2; i<=nm1+1; i++) {
+ a *= (double)i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b/a;
+ }
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ double t,q0,q1,w,h,z,tmp,nf;
+ int k;
+
+ nf = nm1 + 1.0;
+ w = 2*nf/x;
+ h = 2/x;
+ z = w+h;
+ q0 = w;
+ q1 = w*z - 1.0;
+ k = 1;
+ while (q1 < 1.0e9) {
+ k += 1;
+ z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ for (t=0.0, i=k; i>=0; i--)
+ t = 1/(2*(i+nf)/x - t);
+ a = t;
+ b = 1.0;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf*log(fabs(w));
+ if (tmp < 7.09782712893383973096e+02) {
+ for (i=nm1; i>0; i--) {
+ temp = b;
+ b = b*(2.0*i)/x - a;
+ a = temp;
+ }
+ } else {
+ for (i=nm1; i>0; i--) {
+ temp = b;
+ b = b*(2.0*i)/x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ if (b > 0x1p500) {
+ a /= b;
+ t /= b;
+ b = 1.0;
+ }
+ }
+ }
+ z = j0(x);
+ w = j1(x);
+ if (fabs(z) >= fabs(w))
+ b = t*z/b;
+ else
+ b = t*w/a;
+ }
+ }
+ return sign ? -b : b;
+}
+
+
+double yn(int n, double x)
+{
+ uint32_t ix, lx, ib;
+ int nm1, sign, i;
+ double a, b, temp;
+
+ EXTRACT_WORDS(ix, lx, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+
+ if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
+ return x;
+ if (sign && (ix|lx)!=0) /* x < 0 */
+ return 0/0.0;
+ if (ix == 0x7ff00000)
+ return 0.0;
+
+ if (n == 0)
+ return y0(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ sign = n&1;
+ } else {
+ nm1 = n-1;
+ sign = 0;
+ }
+ if (nm1 == 0)
+ return sign ? -y1(x) : y1(x);
+
+ if (ix >= 0x52d00000) { /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch(nm1&3) {
+ case 0: temp = -sin(x)-cos(x); break;
+ case 1: temp = -sin(x)+cos(x); break;
+ case 2: temp = sin(x)+cos(x); break;
+ default:
+ case 3: temp = sin(x)-cos(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = y0(x);
+ b = y1(x);
+ /* quit if b is -inf */
+ GET_HIGH_WORD(ib, b);
+ for (i=0; i<nm1 && ib!=0xfff00000; ){
+ i++;
+ temp = b;
+ b = (2.0*i/x)*b - a;
+ GET_HIGH_WORD(ib, b);
+ a = temp;
+ }
+ }
+ return sign ? -b : b;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/jnf.c b/lib/mlibc/options/ansi/musl-generic-math/jnf.c
new file mode 100644
index 0000000..f63c062
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/jnf.c
@@ -0,0 +1,202 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+float jnf(int n, float x)
+{
+ uint32_t ix;
+ int nm1, sign, i;
+ float a, b, temp;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix > 0x7f800000) /* nan */
+ return x;
+
+ /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+ if (n == 0)
+ return j0f(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ x = -x;
+ sign ^= 1;
+ } else
+ nm1 = n-1;
+ if (nm1 == 0)
+ return j1f(x);
+
+ sign &= n; /* even n: 0, odd n: signbit(x) */
+ x = fabsf(x);
+ if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
+ b = 0.0f;
+ else if (nm1 < x) {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ a = j0f(x);
+ b = j1f(x);
+ for (i=0; i<nm1; ){
+ i++;
+ temp = b;
+ b = b*(2.0f*i/x) - a;
+ a = temp;
+ }
+ } else {
+ if (ix < 0x35800000) { /* x < 2**-20 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (nm1 > 8) /* underflow */
+ nm1 = 8;
+ temp = 0.5f * x;
+ b = temp;
+ a = 1.0f;
+ for (i=2; i<=nm1+1; i++) {
+ a *= (float)i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b/a;
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ float t,q0,q1,w,h,z,tmp,nf;
+ int k;
+
+ nf = nm1+1.0f;
+ w = 2*nf/x;
+ h = 2/x;
+ z = w+h;
+ q0 = w;
+ q1 = w*z - 1.0f;
+ k = 1;
+ while (q1 < 1.0e4f) {
+ k += 1;
+ z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ for (t=0.0f, i=k; i>=0; i--)
+ t = 1.0f/(2*(i+nf)/x-t);
+ a = t;
+ b = 1.0f;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf*logf(fabsf(w));
+ if (tmp < 88.721679688f) {
+ for (i=nm1; i>0; i--) {
+ temp = b;
+ b = 2.0f*i*b/x - a;
+ a = temp;
+ }
+ } else {
+ for (i=nm1; i>0; i--){
+ temp = b;
+ b = 2.0f*i*b/x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ if (b > 0x1p60f) {
+ a /= b;
+ t /= b;
+ b = 1.0f;
+ }
+ }
+ }
+ z = j0f(x);
+ w = j1f(x);
+ if (fabsf(z) >= fabsf(w))
+ b = t*z/b;
+ else
+ b = t*w/a;
+ }
+ }
+ return sign ? -b : b;
+}
+
+float ynf(int n, float x)
+{
+ uint32_t ix, ib;
+ int nm1, sign, i;
+ float a, b, temp;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix > 0x7f800000) /* nan */
+ return x;
+ if (sign && ix != 0) /* x < 0 */
+ return 0/0.0f;
+ if (ix == 0x7f800000)
+ return 0.0f;
+
+ if (n == 0)
+ return y0f(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ sign = n&1;
+ } else {
+ nm1 = n-1;
+ sign = 0;
+ }
+ if (nm1 == 0)
+ return sign ? -y1f(x) : y1f(x);
+
+ a = y0f(x);
+ b = y1f(x);
+ /* quit if b is -inf */
+ GET_FLOAT_WORD(ib,b);
+ for (i = 0; i < nm1 && ib != 0xff800000; ) {
+ i++;
+ temp = b;
+ b = (2.0f*i/x)*b - a;
+ GET_FLOAT_WORD(ib, b);
+ a = temp;
+ }
+ return sign ? -b : b;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ldexp.c b/lib/mlibc/options/ansi/musl-generic-math/ldexp.c
new file mode 100644
index 0000000..f4d1cd6
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ldexp.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+double ldexp(double x, int n)
+{
+ return scalbn(x, n);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ldexpf.c b/lib/mlibc/options/ansi/musl-generic-math/ldexpf.c
new file mode 100644
index 0000000..3bad5f3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ldexpf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+float ldexpf(float x, int n)
+{
+ return scalbnf(x, n);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/ldexpl.c b/lib/mlibc/options/ansi/musl-generic-math/ldexpl.c
new file mode 100644
index 0000000..fd145cc
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/ldexpl.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long double ldexpl(long double x, int n)
+{
+ return scalbnl(x, n);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgamma.c b/lib/mlibc/options/ansi/musl-generic-math/lgamma.c
new file mode 100644
index 0000000..e25ec8e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lgamma.c
@@ -0,0 +1,9 @@
+#include <math.h>
+
+extern int __signgam;
+double __lgamma_r(double, int *);
+
+double lgamma(double x)
+{
+ return __lgamma_r(x, &__signgam);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgamma_r.c b/lib/mlibc/options/ansi/musl-generic-math/lgamma_r.c
new file mode 100644
index 0000000..84596a3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lgamma_r.c
@@ -0,0 +1,285 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* lgamma_r(x, signgamp)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ * 1. Argument Reduction for 0 < x <= 8
+ * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ * reduce x to a number in [1.5,2.5] by
+ * lgamma(1+s) = log(s) + lgamma(s)
+ * for example,
+ * lgamma(7.3) = log(6.3) + lgamma(6.3)
+ * = log(6.3*5.3) + lgamma(5.3)
+ * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ * 2. Polynomial approximation of lgamma around its
+ * minimun ymin=1.461632144968362245 to maintain monotonicity.
+ * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ * Let z = x-ymin;
+ * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ * where
+ * poly(z) is a 14 degree polynomial.
+ * 2. Rational approximation in the primary interval [2,3]
+ * We use the following approximation:
+ * s = x-2.0;
+ * lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ * with accuracy
+ * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+ * Our algorithms are based on the following observation
+ *
+ * zeta(2)-1 2 zeta(3)-1 3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
+ * 2 3
+ *
+ * where Euler = 0.5771... is the Euler constant, which is very
+ * close to 0.5.
+ *
+ * 3. For x>=8, we have
+ * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ * (better formula:
+ * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ * Let z = 1/x, then we approximation
+ * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ * by
+ * 3 5 11
+ * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
+ * where
+ * |w - f(z)| < 2**-58.74
+ *
+ * 4. For negative x, since (G is gamma function)
+ * -x*G(-x)*G(x) = pi/sin(pi*x),
+ * we have
+ * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
+ * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
+ * Hence, for x<0, signgam = sign(sin(pi*x)) and
+ * lgamma(x) = log(|Gamma(x)|)
+ * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
+ * Note: one should avoid compute pi*(-x) directly in the
+ * computation of sin(pi*(-x)).
+ *
+ * 5. Special Cases
+ * lgamma(2+s) ~ s*(1-Euler) for tiny s
+ * lgamma(1) = lgamma(2) = 0
+ * lgamma(x) ~ -log(|x|) for tiny x
+ * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
+ * lgamma(inf) = inf
+ * lgamma(-inf) = inf (bug for bug compatible with C99!?)
+ *
+ */
+
+#include "libm.h"
+#include "weak_alias.h"
+//#include "libc.h"
+
+static const double
+pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
+a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
+a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
+a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
+a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
+a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
+a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
+a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
+a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
+a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
+a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
+a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
+tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
+tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
+/* tt = -(tail of tf) */
+tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
+t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
+t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
+t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
+t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
+t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
+t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
+t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
+t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
+t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
+t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
+t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
+t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
+t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
+t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
+t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
+u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
+u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
+u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
+u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
+u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
+v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
+v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
+v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
+v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
+v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
+s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
+s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
+s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
+s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
+s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
+s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
+r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
+r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
+r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
+r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
+r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
+r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
+w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
+w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
+w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
+w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
+w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
+w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
+w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+
+/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
+static double sin_pi(double x)
+{
+ int n;
+
+ /* spurious inexact if odd int */
+ x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */
+
+ n = (int)(x*4.0);
+ n = (n+1)/2;
+ x -= n*0.5f;
+ x *= pi;
+
+ switch (n) {
+ default: /* case 4: */
+ case 0: return __sin(x, 0.0, 0);
+ case 1: return __cos(x, 0.0);
+ case 2: return __sin(-x, 0.0, 0);
+ case 3: return -__cos(x, 0.0);
+ }
+}
+
+double __lgamma_r(double x, int *signgamp)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t t,y,z,nadj,p,p1,p2,p3,q,r,w;
+ uint32_t ix;
+ int sign,i;
+
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+ *signgamp = 1;
+ sign = u.i>>63;
+ ix = u.i>>32 & 0x7fffffff;
+ if (ix >= 0x7ff00000)
+ return x*x;
+ if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */
+ if(sign) {
+ x = -x;
+ *signgamp = -1;
+ }
+ return -log(x);
+ }
+ if (sign) {
+ x = -x;
+ t = sin_pi(x);
+ if (t == 0.0) /* -integer */
+ return 1.0/(x-x);
+ if (t > 0.0)
+ *signgamp = -1;
+ else
+ t = -t;
+ nadj = log(pi/(t*x));
+ }
+
+ /* purge off 1 and 2 */
+ if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
+ r = 0;
+ /* for x < 2.0 */
+ else if (ix < 0x40000000) {
+ if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
+ r = -log(x);
+ if (ix >= 0x3FE76944) {
+ y = 1.0 - x;
+ i = 0;
+ } else if (ix >= 0x3FCDA661) {
+ y = x - (tc-1.0);
+ i = 1;
+ } else {
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = 0.0;
+ if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
+ y = 2.0 - x;
+ i = 0;
+ } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
+ y = x - tc;
+ i = 1;
+ } else {
+ y = x - 1.0;
+ i = 2;
+ }
+ }
+ switch (i) {
+ case 0:
+ z = y*y;
+ p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
+ p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
+ p = y*p1+p2;
+ r += (p-0.5*y);
+ break;
+ case 1:
+ z = y*y;
+ w = z*y;
+ p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
+ p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
+ p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
+ p = z*p1-(tt-w*(p2+y*p3));
+ r += tf + p;
+ break;
+ case 2:
+ p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
+ p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
+ r += -0.5*y + p1/p2;
+ }
+ } else if (ix < 0x40200000) { /* x < 8.0 */
+ i = (int)x;
+ y = x - (double)i;
+ p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
+ q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
+ r = 0.5*y+p/q;
+ z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+ switch (i) {
+ case 7: z *= y + 6.0; /* FALLTHRU */
+ case 6: z *= y + 5.0; /* FALLTHRU */
+ case 5: z *= y + 4.0; /* FALLTHRU */
+ case 4: z *= y + 3.0; /* FALLTHRU */
+ case 3: z *= y + 2.0; /* FALLTHRU */
+ r += log(z);
+ break;
+ }
+ } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
+ t = log(x);
+ z = 1.0/x;
+ y = z*z;
+ w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
+ r = (x-0.5)*(t-1.0)+w;
+ } else /* 2**58 <= x <= inf */
+ r = x*(log(x)-1.0);
+ if (sign)
+ r = nadj - r;
+ return r;
+}
+
+weak_alias(__lgamma_r, lgamma_r);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgammaf.c b/lib/mlibc/options/ansi/musl-generic-math/lgammaf.c
new file mode 100644
index 0000000..badb6df
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lgammaf.c
@@ -0,0 +1,9 @@
+#include <math.h>
+
+extern int __signgam;
+float __lgammaf_r(float, int *);
+
+float lgammaf(float x)
+{
+ return __lgammaf_r(x, &__signgam);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgammaf_r.c b/lib/mlibc/options/ansi/musl-generic-math/lgammaf_r.c
new file mode 100644
index 0000000..f73e89d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lgammaf_r.c
@@ -0,0 +1,220 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+#include "weak_alias.h"
+//#include "libc.h"
+
+static const float
+pi = 3.1415927410e+00, /* 0x40490fdb */
+a0 = 7.7215664089e-02, /* 0x3d9e233f */
+a1 = 3.2246702909e-01, /* 0x3ea51a66 */
+a2 = 6.7352302372e-02, /* 0x3d89f001 */
+a3 = 2.0580807701e-02, /* 0x3ca89915 */
+a4 = 7.3855509982e-03, /* 0x3bf2027e */
+a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
+a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
+a7 = 5.1006977446e-04, /* 0x3a05b634 */
+a8 = 2.2086278477e-04, /* 0x39679767 */
+a9 = 1.0801156895e-04, /* 0x38e28445 */
+a10 = 2.5214456400e-05, /* 0x37d383a2 */
+a11 = 4.4864096708e-05, /* 0x383c2c75 */
+tc = 1.4616321325e+00, /* 0x3fbb16c3 */
+tf = -1.2148628384e-01, /* 0xbdf8cdcd */
+/* tt = -(tail of tf) */
+tt = 6.6971006518e-09, /* 0x31e61c52 */
+t0 = 4.8383611441e-01, /* 0x3ef7b95e */
+t1 = -1.4758771658e-01, /* 0xbe17213c */
+t2 = 6.4624942839e-02, /* 0x3d845a15 */
+t3 = -3.2788541168e-02, /* 0xbd064d47 */
+t4 = 1.7970675603e-02, /* 0x3c93373d */
+t5 = -1.0314224288e-02, /* 0xbc28fcfe */
+t6 = 6.1005386524e-03, /* 0x3bc7e707 */
+t7 = -3.6845202558e-03, /* 0xbb7177fe */
+t8 = 2.2596477065e-03, /* 0x3b141699 */
+t9 = -1.4034647029e-03, /* 0xbab7f476 */
+t10 = 8.8108185446e-04, /* 0x3a66f867 */
+t11 = -5.3859531181e-04, /* 0xba0d3085 */
+t12 = 3.1563205994e-04, /* 0x39a57b6b */
+t13 = -3.1275415677e-04, /* 0xb9a3f927 */
+t14 = 3.3552918467e-04, /* 0x39afe9f7 */
+u0 = -7.7215664089e-02, /* 0xbd9e233f */
+u1 = 6.3282704353e-01, /* 0x3f2200f4 */
+u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
+u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
+u4 = 2.2896373272e-01, /* 0x3e6a7578 */
+u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
+v1 = 2.4559779167e+00, /* 0x401d2ebe */
+v2 = 2.1284897327e+00, /* 0x4008392d */
+v3 = 7.6928514242e-01, /* 0x3f44efdf */
+v4 = 1.0422264785e-01, /* 0x3dd572af */
+v5 = 3.2170924824e-03, /* 0x3b52d5db */
+s0 = -7.7215664089e-02, /* 0xbd9e233f */
+s1 = 2.1498242021e-01, /* 0x3e5c245a */
+s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
+s3 = 1.4635047317e-01, /* 0x3e15dce6 */
+s4 = 2.6642270386e-02, /* 0x3cda40e4 */
+s5 = 1.8402845599e-03, /* 0x3af135b4 */
+s6 = 3.1947532989e-05, /* 0x3805ff67 */
+r1 = 1.3920053244e+00, /* 0x3fb22d3b */
+r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
+r3 = 1.7193385959e-01, /* 0x3e300f6e */
+r4 = 1.8645919859e-02, /* 0x3c98bf54 */
+r5 = 7.7794247773e-04, /* 0x3a4beed6 */
+r6 = 7.3266842264e-06, /* 0x36f5d7bd */
+w0 = 4.1893854737e-01, /* 0x3ed67f1d */
+w1 = 8.3333335817e-02, /* 0x3daaaaab */
+w2 = -2.7777778450e-03, /* 0xbb360b61 */
+w3 = 7.9365057172e-04, /* 0x3a500cfd */
+w4 = -5.9518753551e-04, /* 0xba1c065c */
+w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
+w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
+
+/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
+static float sin_pi(float x)
+{
+ double_t y;
+ int n;
+
+ /* spurious inexact if odd int */
+ x = 2*(x*0.5f - floorf(x*0.5f)); /* x mod 2.0 */
+
+ n = (int)(x*4);
+ n = (n+1)/2;
+ y = x - n*0.5f;
+ y *= 3.14159265358979323846;
+ switch (n) {
+ default: /* case 4: */
+ case 0: return __sindf(y);
+ case 1: return __cosdf(y);
+ case 2: return __sindf(-y);
+ case 3: return -__cosdf(y);
+ }
+}
+
+float __lgammaf_r(float x, int *signgamp)
+{
+ union {float f; uint32_t i;} u = {x};
+ float t,y,z,nadj,p,p1,p2,p3,q,r,w;
+ uint32_t ix;
+ int i,sign;
+
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+ *signgamp = 1;
+ sign = u.i>>31;
+ ix = u.i & 0x7fffffff;
+ if (ix >= 0x7f800000)
+ return x*x;
+ if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */
+ if (sign) {
+ *signgamp = -1;
+ x = -x;
+ }
+ return -logf(x);
+ }
+ if (sign) {
+ x = -x;
+ t = sin_pi(x);
+ if (t == 0.0f) /* -integer */
+ return 1.0f/(x-x);
+ if (t > 0.0f)
+ *signgamp = -1;
+ else
+ t = -t;
+ nadj = logf(pi/(t*x));
+ }
+
+ /* purge off 1 and 2 */
+ if (ix == 0x3f800000 || ix == 0x40000000)
+ r = 0;
+ /* for x < 2.0 */
+ else if (ix < 0x40000000) {
+ if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
+ r = -logf(x);
+ if (ix >= 0x3f3b4a20) {
+ y = 1.0f - x;
+ i = 0;
+ } else if (ix >= 0x3e6d3308) {
+ y = x - (tc-1.0f);
+ i = 1;
+ } else {
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = 0.0f;
+ if (ix >= 0x3fdda618) { /* [1.7316,2] */
+ y = 2.0f - x;
+ i = 0;
+ } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */
+ y = x - tc;
+ i = 1;
+ } else {
+ y = x - 1.0f;
+ i = 2;
+ }
+ }
+ switch(i) {
+ case 0:
+ z = y*y;
+ p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
+ p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
+ p = y*p1+p2;
+ r += p - 0.5f*y;
+ break;
+ case 1:
+ z = y*y;
+ w = z*y;
+ p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
+ p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
+ p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
+ p = z*p1-(tt-w*(p2+y*p3));
+ r += (tf + p);
+ break;
+ case 2:
+ p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
+ p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
+ r += -0.5f*y + p1/p2;
+ }
+ } else if (ix < 0x41000000) { /* x < 8.0 */
+ i = (int)x;
+ y = x - (float)i;
+ p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
+ q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
+ r = 0.5f*y+p/q;
+ z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */
+ switch (i) {
+ case 7: z *= y + 6.0f; /* FALLTHRU */
+ case 6: z *= y + 5.0f; /* FALLTHRU */
+ case 5: z *= y + 4.0f; /* FALLTHRU */
+ case 4: z *= y + 3.0f; /* FALLTHRU */
+ case 3: z *= y + 2.0f; /* FALLTHRU */
+ r += logf(z);
+ break;
+ }
+ } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */
+ t = logf(x);
+ z = 1.0f/x;
+ y = z*z;
+ w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
+ r = (x-0.5f)*(t-1.0f)+w;
+ } else /* 2**58 <= x <= inf */
+ r = x*(logf(x)-1.0f);
+ if (sign)
+ r = nadj - r;
+ return r;
+}
+
+weak_alias(__lgammaf_r, lgammaf_r);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgammal.c b/lib/mlibc/options/ansi/musl-generic-math/lgammal.c
new file mode 100644
index 0000000..f0bea36
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lgammal.c
@@ -0,0 +1,361 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/* lgammal(x)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ * 1. Argument Reduction for 0 < x <= 8
+ * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ * reduce x to a number in [1.5,2.5] by
+ * lgamma(1+s) = log(s) + lgamma(s)
+ * for example,
+ * lgamma(7.3) = log(6.3) + lgamma(6.3)
+ * = log(6.3*5.3) + lgamma(5.3)
+ * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ * 2. Polynomial approximation of lgamma around its
+ * minimun ymin=1.461632144968362245 to maintain monotonicity.
+ * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ * Let z = x-ymin;
+ * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ * 2. Rational approximation in the primary interval [2,3]
+ * We use the following approximation:
+ * s = x-2.0;
+ * lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ * Our algorithms are based on the following observation
+ *
+ * zeta(2)-1 2 zeta(3)-1 3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
+ * 2 3
+ *
+ * where Euler = 0.5771... is the Euler constant, which is very
+ * close to 0.5.
+ *
+ * 3. For x>=8, we have
+ * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ * (better formula:
+ * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ * Let z = 1/x, then we approximation
+ * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ * by
+ * 3 5 11
+ * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
+ *
+ * 4. For negative x, since (G is gamma function)
+ * -x*G(-x)*G(x) = pi/sin(pi*x),
+ * we have
+ * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
+ * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
+ * Hence, for x<0, signgam = sign(sin(pi*x)) and
+ * lgamma(x) = log(|Gamma(x)|)
+ * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
+ * Note: one should avoid compute pi*(-x) directly in the
+ * computation of sin(pi*(-x)).
+ *
+ * 5. Special Cases
+ * lgamma(2+s) ~ s*(1-Euler) for tiny s
+ * lgamma(1)=lgamma(2)=0
+ * lgamma(x) ~ -log(x) for tiny x
+ * lgamma(0) = lgamma(inf) = inf
+ * lgamma(-integer) = +-inf
+ *
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+#include "weak_alias.h"
+//#include "libc.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+double __lgamma_r(double x, int *sg);
+
+long double __lgammal_r(long double x, int *sg)
+{
+ return __lgamma_r(x, sg);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+static const long double
+pi = 3.14159265358979323846264L,
+
+/* lgam(1+x) = 0.5 x + x a(x)/b(x)
+ -0.268402099609375 <= x <= 0
+ peak relative error 6.6e-22 */
+a0 = -6.343246574721079391729402781192128239938E2L,
+a1 = 1.856560238672465796768677717168371401378E3L,
+a2 = 2.404733102163746263689288466865843408429E3L,
+a3 = 8.804188795790383497379532868917517596322E2L,
+a4 = 1.135361354097447729740103745999661157426E2L,
+a5 = 3.766956539107615557608581581190400021285E0L,
+
+b0 = 8.214973713960928795704317259806842490498E3L,
+b1 = 1.026343508841367384879065363925870888012E4L,
+b2 = 4.553337477045763320522762343132210919277E3L,
+b3 = 8.506975785032585797446253359230031874803E2L,
+b4 = 6.042447899703295436820744186992189445813E1L,
+/* b5 = 1.000000000000000000000000000000000000000E0 */
+
+
+tc = 1.4616321449683623412626595423257213284682E0L,
+tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
+/* tt = (tail of tf), i.e. tf + tt has extended precision. */
+tt = 3.3649914684731379602768989080467587736363E-18L,
+/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
+-1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
+
+/* lgam (x + tc) = tf + tt + x g(x)/h(x)
+ -0.230003726999612341262659542325721328468 <= x
+ <= 0.2699962730003876587373404576742786715318
+ peak relative error 2.1e-21 */
+g0 = 3.645529916721223331888305293534095553827E-18L,
+g1 = 5.126654642791082497002594216163574795690E3L,
+g2 = 8.828603575854624811911631336122070070327E3L,
+g3 = 5.464186426932117031234820886525701595203E3L,
+g4 = 1.455427403530884193180776558102868592293E3L,
+g5 = 1.541735456969245924860307497029155838446E2L,
+g6 = 4.335498275274822298341872707453445815118E0L,
+
+h0 = 1.059584930106085509696730443974495979641E4L,
+h1 = 2.147921653490043010629481226937850618860E4L,
+h2 = 1.643014770044524804175197151958100656728E4L,
+h3 = 5.869021995186925517228323497501767586078E3L,
+h4 = 9.764244777714344488787381271643502742293E2L,
+h5 = 6.442485441570592541741092969581997002349E1L,
+/* h6 = 1.000000000000000000000000000000000000000E0 */
+
+
+/* lgam (x+1) = -0.5 x + x u(x)/v(x)
+ -0.100006103515625 <= x <= 0.231639862060546875
+ peak relative error 1.3e-21 */
+u0 = -8.886217500092090678492242071879342025627E1L,
+u1 = 6.840109978129177639438792958320783599310E2L,
+u2 = 2.042626104514127267855588786511809932433E3L,
+u3 = 1.911723903442667422201651063009856064275E3L,
+u4 = 7.447065275665887457628865263491667767695E2L,
+u5 = 1.132256494121790736268471016493103952637E2L,
+u6 = 4.484398885516614191003094714505960972894E0L,
+
+v0 = 1.150830924194461522996462401210374632929E3L,
+v1 = 3.399692260848747447377972081399737098610E3L,
+v2 = 3.786631705644460255229513563657226008015E3L,
+v3 = 1.966450123004478374557778781564114347876E3L,
+v4 = 4.741359068914069299837355438370682773122E2L,
+v5 = 4.508989649747184050907206782117647852364E1L,
+/* v6 = 1.000000000000000000000000000000000000000E0 */
+
+
+/* lgam (x+2) = .5 x + x s(x)/r(x)
+ 0 <= x <= 1
+ peak relative error 7.2e-22 */
+s0 = 1.454726263410661942989109455292824853344E6L,
+s1 = -3.901428390086348447890408306153378922752E6L,
+s2 = -6.573568698209374121847873064292963089438E6L,
+s3 = -3.319055881485044417245964508099095984643E6L,
+s4 = -7.094891568758439227560184618114707107977E5L,
+s5 = -6.263426646464505837422314539808112478303E4L,
+s6 = -1.684926520999477529949915657519454051529E3L,
+
+r0 = -1.883978160734303518163008696712983134698E7L,
+r1 = -2.815206082812062064902202753264922306830E7L,
+r2 = -1.600245495251915899081846093343626358398E7L,
+r3 = -4.310526301881305003489257052083370058799E6L,
+r4 = -5.563807682263923279438235987186184968542E5L,
+r5 = -3.027734654434169996032905158145259713083E4L,
+r6 = -4.501995652861105629217250715790764371267E2L,
+/* r6 = 1.000000000000000000000000000000000000000E0 */
+
+
+/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
+ x >= 8
+ Peak relative error 1.51e-21
+w0 = LS2PI - 0.5 */
+w0 = 4.189385332046727417803e-1L,
+w1 = 8.333333333333331447505E-2L,
+w2 = -2.777777777750349603440E-3L,
+w3 = 7.936507795855070755671E-4L,
+w4 = -5.952345851765688514613E-4L,
+w5 = 8.412723297322498080632E-4L,
+w6 = -1.880801938119376907179E-3L,
+w7 = 4.885026142432270781165E-3L;
+
+/* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
+static long double sin_pi(long double x)
+{
+ int n;
+
+ /* spurious inexact if odd int */
+ x *= 0.5;
+ x = 2.0*(x - floorl(x)); /* x mod 2.0 */
+
+ n = (int)(x*4.0);
+ n = (n+1)/2;
+ x -= n*0.5f;
+ x *= pi;
+
+ switch (n) {
+ default: /* case 4: */
+ case 0: return __sinl(x, 0.0, 0);
+ case 1: return __cosl(x, 0.0);
+ case 2: return __sinl(-x, 0.0, 0);
+ case 3: return -__cosl(x, 0.0);
+ }
+}
+
+long double __lgammal_r(long double x, int *sg) {
+ long double t, y, z, nadj, p, p1, p2, q, r, w;
+ union ldshape u = {x};
+ uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
+ int sign = u.i.se >> 15;
+ int i;
+
+ *sg = 1;
+
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+ if (ix >= 0x7fff0000)
+ return x * x;
+ if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
+ if (sign) {
+ *sg = -1;
+ x = -x;
+ }
+ return -logl(x);
+ }
+ if (sign) {
+ x = -x;
+ t = sin_pi(x);
+ if (t == 0.0)
+ return 1.0 / (x-x); /* -integer */
+ if (t > 0.0)
+ *sg = -1;
+ else
+ t = -t;
+ nadj = logl(pi / (t * x));
+ }
+
+ /* purge off 1 and 2 (so the sign is ok with downward rounding) */
+ if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
+ r = 0;
+ } else if (ix < 0x40008000) { /* x < 2.0 */
+ if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */
+ /* lgamma(x) = lgamma(x+1) - log(x) */
+ r = -logl(x);
+ if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
+ y = x - 1.0;
+ i = 0;
+ } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
+ y = x - (tc - 1.0);
+ i = 1;
+ } else { /* x < 0.23 */
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = 0.0;
+ if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
+ /* [1.7316,2] */
+ y = x - 2.0;
+ i = 0;
+ } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
+ /* [1.23,1.73] */
+ y = x - tc;
+ i = 1;
+ } else {
+ /* [0.9, 1.23] */
+ y = x - 1.0;
+ i = 2;
+ }
+ }
+ switch (i) {
+ case 0:
+ p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
+ p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
+ r += 0.5 * y + y * p1/p2;
+ break;
+ case 1:
+ p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
+ p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
+ p = tt + y * p1/p2;
+ r += (tf + p);
+ break;
+ case 2:
+ p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
+ p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
+ r += (-0.5 * y + p1 / p2);
+ }
+ } else if (ix < 0x40028000) { /* 8.0 */
+ /* x < 8.0 */
+ i = (int)x;
+ y = x - (double)i;
+ p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
+ q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
+ r = 0.5 * y + p / q;
+ z = 1.0;
+ /* lgamma(1+s) = log(s) + lgamma(s) */
+ switch (i) {
+ case 7:
+ z *= (y + 6.0); /* FALLTHRU */
+ case 6:
+ z *= (y + 5.0); /* FALLTHRU */
+ case 5:
+ z *= (y + 4.0); /* FALLTHRU */
+ case 4:
+ z *= (y + 3.0); /* FALLTHRU */
+ case 3:
+ z *= (y + 2.0); /* FALLTHRU */
+ r += logl(z);
+ break;
+ }
+ } else if (ix < 0x40418000) { /* 2^66 */
+ /* 8.0 <= x < 2**66 */
+ t = logl(x);
+ z = 1.0 / x;
+ y = z * z;
+ w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
+ r = (x - 0.5) * (t - 1.0) + w;
+ } else /* 2**66 <= x <= inf */
+ r = x * (logl(x) - 1.0);
+ if (sign)
+ r = nadj - r;
+ return r;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+double __lgamma_r(double x, int *sg);
+
+long double __lgammal_r(long double x, int *sg)
+{
+ return __lgamma_r(x, sg);
+}
+#endif
+
+extern int __signgam;
+
+long double lgammal(long double x)
+{
+ return __lgammal_r(x, &__signgam);
+}
+
+weak_alias(__lgammal_r, lgammal_r);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/libm.h b/lib/mlibc/options/ansi/musl-generic-math/libm.h
new file mode 100644
index 0000000..8120292
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/libm.h
@@ -0,0 +1,186 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/math_private.h */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#ifndef _LIBM_H
+#define _LIBM_H
+
+#include <stdint.h>
+#include <float.h>
+#include <math.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
+union ldshape {
+ long double f;
+ struct {
+ uint64_t m;
+ uint16_t se;
+ } i;
+};
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
+union ldshape {
+ long double f;
+ struct {
+ uint64_t lo;
+ uint32_t mid;
+ uint16_t top;
+ uint16_t se;
+ } i;
+ struct {
+ uint64_t lo;
+ uint64_t hi;
+ } i2;
+};
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
+union ldshape {
+ long double f;
+ struct {
+ uint16_t se;
+ uint16_t top;
+ uint32_t mid;
+ uint64_t lo;
+ } i;
+ struct {
+ uint64_t hi;
+ uint64_t lo;
+ } i2;
+};
+#else
+#error Unsupported long double representation
+#endif
+
+#define FORCE_EVAL(x) do { \
+ if (sizeof(x) == sizeof(float)) { \
+ volatile float __x; \
+ __x = (x); \
+ } else if (sizeof(x) == sizeof(double)) { \
+ volatile double __x; \
+ __x = (x); \
+ } else { \
+ volatile long double __x; \
+ __x = (x); \
+ } \
+} while(0)
+
+/* Get two 32 bit ints from a double. */
+#define EXTRACT_WORDS(hi,lo,d) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.f = (d); \
+ (hi) = __u.i >> 32; \
+ (lo) = (uint32_t)__u.i; \
+} while (0)
+
+/* Get the more significant 32 bit int from a double. */
+#define GET_HIGH_WORD(hi,d) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.f = (d); \
+ (hi) = __u.i >> 32; \
+} while (0)
+
+/* Get the less significant 32 bit int from a double. */
+#define GET_LOW_WORD(lo,d) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.f = (d); \
+ (lo) = (uint32_t)__u.i; \
+} while (0)
+
+/* Set a double from two 32 bit ints. */
+#define INSERT_WORDS(d,hi,lo) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.i = ((uint64_t)(hi)<<32) | (uint32_t)(lo); \
+ (d) = __u.f; \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int. */
+#define SET_HIGH_WORD(d,hi) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.f = (d); \
+ __u.i &= 0xffffffff; \
+ __u.i |= (uint64_t)(hi) << 32; \
+ (d) = __u.f; \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int. */
+#define SET_LOW_WORD(d,lo) \
+do { \
+ union {double f; uint64_t i;} __u; \
+ __u.f = (d); \
+ __u.i &= 0xffffffff00000000ull; \
+ __u.i |= (uint32_t)(lo); \
+ (d) = __u.f; \
+} while (0)
+
+/* Get a 32 bit int from a float. */
+#define GET_FLOAT_WORD(w,d) \
+do { \
+ union {float f; uint32_t i;} __u; \
+ __u.f = (d); \
+ (w) = __u.i; \
+} while (0)
+
+/* Set a float from a 32 bit int. */
+#define SET_FLOAT_WORD(d,w) \
+do { \
+ union {float f; uint32_t i;} __u; \
+ __u.i = (w); \
+ (d) = __u.f; \
+} while (0)
+
+#undef __CMPLX
+#undef CMPLX
+#undef CMPLXF
+#undef CMPLXL
+
+#define __CMPLX(x, y, t) \
+ ((union { _Complex t __z; t __xy[2]; }){.__xy = {(x),(y)}}.__z)
+
+#define CMPLX(x, y) __CMPLX(x, y, double)
+#define CMPLXF(x, y) __CMPLX(x, y, float)
+#define CMPLXL(x, y) __CMPLX(x, y, long double)
+
+#ifndef __MLIBC_ABI_ONLY
+
+/* fdlibm kernel functions */
+
+int __rem_pio2_large(double*,double*,int,int,int);
+
+int __rem_pio2(double,double*);
+double __sin(double,double,int);
+double __cos(double,double);
+double __tan(double,double,int);
+double __expo2(double);
+//double complex __ldexp_cexp(double complex,int);
+
+int __rem_pio2f(float,double*);
+float __sindf(double);
+float __cosdf(double);
+float __tandf(double,int);
+float __expo2f(float);
+//float complex __ldexp_cexpf(float complex,int);
+
+int __rem_pio2l(long double, long double *);
+long double __sinl(long double, long double, int);
+long double __cosl(long double, long double);
+long double __tanl(long double, long double, int);
+
+/* polynomial evaluation */
+long double __polevll(long double, const long double *, int);
+long double __p1evll(long double, const long double *, int);
+
+#endif /* !__MLIBC_ABI_ONLY */
+
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llrint.c b/lib/mlibc/options/ansi/musl-generic-math/llrint.c
new file mode 100644
index 0000000..4f583ae
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llrint.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+/* uses LLONG_MAX > 2^53, see comments in lrint.c */
+
+long long llrint(double x)
+{
+ return rint(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llrintf.c b/lib/mlibc/options/ansi/musl-generic-math/llrintf.c
new file mode 100644
index 0000000..96949a0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llrintf.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+/* uses LLONG_MAX > 2^24, see comments in lrint.c */
+
+long long llrintf(float x)
+{
+ return rintf(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llrintl.c b/lib/mlibc/options/ansi/musl-generic-math/llrintl.c
new file mode 100644
index 0000000..3449f6f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llrintl.c
@@ -0,0 +1,36 @@
+#include <limits.h>
+#include <fenv.h>
+#include "libm.h"
+
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long long llrintl(long double x)
+{
+ return llrint(x);
+}
+#elif defined(FE_INEXACT)
+/*
+see comments in lrint.c
+
+Note that if LLONG_MAX == 0x7fffffffffffffff && LDBL_MANT_DIG == 64
+then x == 2**63 - 0.5 is the only input that overflows and
+raises inexact (with tonearest or upward rounding mode)
+*/
+long long llrintl(long double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+ x = rintl(x);
+ if (!e && (x > LLONG_MAX || x < LLONG_MIN))
+ feclearexcept(FE_INEXACT);
+ /* conversion */
+ return x;
+}
+#else
+long long llrintl(long double x)
+{
+ return rintl(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llround.c b/lib/mlibc/options/ansi/musl-generic-math/llround.c
new file mode 100644
index 0000000..4d94787
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llround.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long long llround(double x)
+{
+ return round(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llroundf.c b/lib/mlibc/options/ansi/musl-generic-math/llroundf.c
new file mode 100644
index 0000000..19eb77e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llroundf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long long llroundf(float x)
+{
+ return roundf(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/llroundl.c b/lib/mlibc/options/ansi/musl-generic-math/llroundl.c
new file mode 100644
index 0000000..2c2ee5e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/llroundl.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long long llroundl(long double x)
+{
+ return roundl(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log.c b/lib/mlibc/options/ansi/musl-generic-math/log.c
new file mode 100644
index 0000000..e61e113
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log.c
@@ -0,0 +1,118 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Remez algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const double
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,s,z,R,w,t1,t2,dk;
+ uint32_t hx;
+ int k;
+
+ hx = u.i>>32;
+ k = 0;
+ if (hx < 0x00100000 || hx>>31) {
+ if (u.i<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (hx>>31)
+ return (x-x)/0.0; /* log(-#) = NaN */
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= 0x1p54;
+ u.f = x;
+ hx = u.i>>32;
+ } else if (hx >= 0x7ff00000) {
+ return x;
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (int)(hx>>20) - 0x3ff;
+ hx = (hx&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+ x = u.f;
+
+ f = x - 1.0;
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+ dk = k;
+ return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log10.c b/lib/mlibc/options/ansi/musl-generic-math/log10.c
new file mode 100644
index 0000000..8102687
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log10.c
@@ -0,0 +1,101 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 10 logarithm of x. See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const double
+ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
+ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
+log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
+log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log10(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
+ uint32_t hx;
+ int k;
+
+ hx = u.i>>32;
+ k = 0;
+ if (hx < 0x00100000 || hx>>31) {
+ if (u.i<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (hx>>31)
+ return (x-x)/0.0; /* log(-#) = NaN */
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= 0x1p54;
+ u.f = x;
+ hx = u.i>>32;
+ } else if (hx >= 0x7ff00000) {
+ return x;
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (int)(hx>>20) - 0x3ff;
+ hx = (hx&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+ x = u.f;
+
+ f = x - 1.0;
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+
+ /* See log2.c for details. */
+ /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+ hi = f - hfsq;
+ u.f = hi;
+ u.i &= (uint64_t)-1<<32;
+ hi = u.f;
+ lo = f - hi - hfsq + s*(hfsq+R);
+
+ /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
+ val_hi = hi*ivln10hi;
+ dk = k;
+ y = dk*log10_2hi;
+ val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
+
+ /*
+ * Extra precision in for adding y is not strictly needed
+ * since there is no very large cancellation near x = sqrt(2) or
+ * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
+ * with some parallelism and it reduces the error for many args.
+ */
+ w = y + val_hi;
+ val_lo += (y - w) + val_hi;
+ val_hi = w;
+
+ return val_lo + val_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log10f.c b/lib/mlibc/options/ansi/musl-generic-math/log10f.c
new file mode 100644
index 0000000..9ca2f01
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log10f.c
@@ -0,0 +1,77 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log10.c.
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const float
+ivln10hi = 4.3432617188e-01, /* 0x3ede6000 */
+ivln10lo = -3.1689971365e-05, /* 0xb804ead9 */
+log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
+log10_2lo = 7.9034151668e-07, /* 0x355427db */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+
+float log10f(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ float_t hfsq,f,s,z,R,w,t1,t2,dk,hi,lo;
+ uint32_t ix;
+ int k;
+
+ ix = u.i;
+ k = 0;
+ if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
+ if (ix<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (ix>>31)
+ return (x-x)/0.0f; /* log(-#) = NaN */
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= 0x1p25f;
+ u.f = x;
+ ix = u.i;
+ } else if (ix >= 0x7f800000) {
+ return x;
+ } else if (ix == 0x3f800000)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += (int)(ix>>23) - 0x7f;
+ ix = (ix&0x007fffff) + 0x3f3504f3;
+ u.i = ix;
+ x = u.f;
+
+ f = x - 1.0f;
+ s = f/(2.0f + f);
+ z = s*s;
+ w = z*z;
+ t1= w*(Lg2+w*Lg4);
+ t2= z*(Lg1+w*Lg3);
+ R = t2 + t1;
+ hfsq = 0.5f*f*f;
+
+ hi = f - hfsq;
+ u.f = hi;
+ u.i &= 0xfffff000;
+ hi = u.f;
+ lo = f - hi - hfsq + s*(hfsq+R);
+ dk = k;
+ return dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi + dk*log10_2hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log10l.c b/lib/mlibc/options/ansi/musl-generic-math/log10l.c
new file mode 100644
index 0000000..63dcc28
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log10l.c
@@ -0,0 +1,191 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Common logarithm, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, log10l();
+ *
+ * y = log10l( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base 10 logarithm of x.
+ *
+ * The argument is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the logarithm
+ * of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/x+1),
+ *
+ * log(x) = z + z**3 P(z)/Q(z).
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20
+ * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20
+ *
+ * In the tests over the interval exp(+-10000), the logarithms
+ * of the random arguments were uniformly distributed over
+ * [-10000, +10000].
+ *
+ * ERROR MESSAGES:
+ *
+ * log singularity: x = 0; returns MINLOG
+ * log domain: x < 0; returns MINLOG
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double log10l(long double x)
+{
+ return log10(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.2e-22
+ */
+static const long double P[] = {
+ 4.9962495940332550844739E-1L,
+ 1.0767376367209449010438E1L,
+ 7.7671073698359539859595E1L,
+ 2.5620629828144409632571E2L,
+ 4.2401812743503691187826E2L,
+ 3.4258224542413922935104E2L,
+ 1.0747524399916215149070E2L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0,*/
+ 2.3479774160285863271658E1L,
+ 1.9444210022760132894510E2L,
+ 7.7952888181207260646090E2L,
+ 1.6911722418503949084863E3L,
+ 2.0307734695595183428202E3L,
+ 1.2695660352705325274404E3L,
+ 3.2242573199748645407652E2L,
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.16e-22
+ */
+static const long double R[4] = {
+ 1.9757429581415468984296E-3L,
+-7.1990767473014147232598E-1L,
+ 1.0777257190312272158094E1L,
+-3.5717684488096787370998E1L,
+};
+static const long double S[4] = {
+/* 1.00000000000000000000E0L,*/
+-2.6201045551331104417768E1L,
+ 1.9361891836232102174846E2L,
+-4.2861221385716144629696E2L,
+};
+/* log10(2) */
+#define L102A 0.3125L
+#define L102B -1.1470004336018804786261e-2L
+/* log10(e) */
+#define L10EA 0.5L
+#define L10EB -6.5705518096748172348871e-2L
+
+#define SQRTH 0.70710678118654752440L
+
+long double log10l(long double x)
+{
+ long double y, z;
+ int e;
+
+ if (isnan(x))
+ return x;
+ if(x <= 0.0) {
+ if(x == 0.0)
+ return -1.0 / (x*x);
+ return (x - x) / 0.0;
+ }
+ if (x == INFINITY)
+ return INFINITY;
+ /* separate mantissa from exponent */
+ /* Note, frexp is used so that denormal numbers
+ * will be handled properly.
+ */
+ x = frexpl(x, &e);
+
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+ * where z = 2(x-1)/x+1)
+ */
+ if (e > 2 || e < -2) {
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+ e -= 1;
+ z = x - 0.5;
+ y = 0.5 * z + 0.5;
+ } else { /* 2 (x-1)/(x+1) */
+ z = x - 0.5;
+ z -= 0.5;
+ y = 0.5 * x + 0.5;
+ }
+ x = z / y;
+ z = x*x;
+ y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+ goto done;
+ }
+
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+ if (x < SQRTH) {
+ e -= 1;
+ x = 2.0*x - 1.0;
+ } else {
+ x = x - 1.0;
+ }
+ z = x*x;
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
+ y = y - 0.5*z;
+
+done:
+ /* Multiply log of fraction by log10(e)
+ * and base 2 exponent by log10(2).
+ *
+ * ***CAUTION***
+ *
+ * This sequence of operations is critical and it may
+ * be horribly defeated by some compiler optimizers.
+ */
+ z = y * (L10EB);
+ z += x * (L10EB);
+ z += e * (L102B);
+ z += y * (L10EA);
+ z += x * (L10EA);
+ z += e * (L102A);
+ return z;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double log10l(long double x)
+{
+ return log10(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log1p.c b/lib/mlibc/options/ansi/musl-generic-math/log1p.c
new file mode 100644
index 0000000..0097134
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log1p.c
@@ -0,0 +1,122 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double log1p(double x)
+ * Return the natural logarithm of 1+x.
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log(1+f): See log.c
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+#include "libm.h"
+
+static const double
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log1p(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
+ uint32_t hx,hu;
+ int k;
+
+ hx = u.i>>32;
+ k = 1;
+ if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
+ if (hx >= 0xbff00000) { /* x <= -1.0 */
+ if (x == -1)
+ return x/0.0; /* log1p(-1) = -inf */
+ return (x-x)/0.0; /* log1p(x<-1) = NaN */
+ }
+ if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
+ /* underflow if subnormal */
+ if ((hx&0x7ff00000) == 0)
+ FORCE_EVAL((float)x);
+ return x;
+ }
+ if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ k = 0;
+ c = 0;
+ f = x;
+ }
+ } else if (hx >= 0x7ff00000)
+ return x;
+ if (k) {
+ u.f = 1 + x;
+ hu = u.i>>32;
+ hu += 0x3ff00000 - 0x3fe6a09e;
+ k = (int)(hu>>20) - 0x3ff;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if (k < 54) {
+ c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
+ c /= u.f;
+ } else
+ c = 0;
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ hu = (hu&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
+ f = u.f - 1;
+ }
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+ dk = k;
+ return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log1pf.c b/lib/mlibc/options/ansi/musl-generic-math/log1pf.c
new file mode 100644
index 0000000..23985c3
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log1pf.c
@@ -0,0 +1,77 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+
+float log1pf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ float_t hfsq,f,c,s,z,R,w,t1,t2,dk;
+ uint32_t ix,iu;
+ int k;
+
+ ix = u.i;
+ k = 1;
+ if (ix < 0x3ed413d0 || ix>>31) { /* 1+x < sqrt(2)+ */
+ if (ix >= 0xbf800000) { /* x <= -1.0 */
+ if (x == -1)
+ return x/0.0f; /* log1p(-1)=+inf */
+ return (x-x)/0.0f; /* log1p(x<-1)=NaN */
+ }
+ if (ix<<1 < 0x33800000<<1) { /* |x| < 2**-24 */
+ /* underflow if subnormal */
+ if ((ix&0x7f800000) == 0)
+ FORCE_EVAL(x*x);
+ return x;
+ }
+ if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ k = 0;
+ c = 0;
+ f = x;
+ }
+ } else if (ix >= 0x7f800000)
+ return x;
+ if (k) {
+ u.f = 1 + x;
+ iu = u.i;
+ iu += 0x3f800000 - 0x3f3504f3;
+ k = (int)(iu>>23) - 0x7f;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if (k < 25) {
+ c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
+ c /= u.f;
+ } else
+ c = 0;
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ iu = (iu&0x007fffff) + 0x3f3504f3;
+ u.i = iu;
+ f = u.f - 1;
+ }
+ s = f/(2.0f + f);
+ z = s*s;
+ w = z*z;
+ t1= w*(Lg2+w*Lg4);
+ t2= z*(Lg1+w*Lg3);
+ R = t2 + t1;
+ hfsq = 0.5f*f*f;
+ dk = k;
+ return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log1pl.c b/lib/mlibc/options/ansi/musl-generic-math/log1pl.c
new file mode 100644
index 0000000..141b5f0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log1pl.c
@@ -0,0 +1,177 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Relative error logarithm
+ * Natural logarithm of 1+x, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, log1pl();
+ *
+ * y = log1pl( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base e (2.718...) logarithm of 1+x.
+ *
+ * The argument 1+x is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the logarithm
+ * of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/x+1),
+ *
+ * log(x) = z + z^3 P(z)/Q(z).
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double log1pl(long double x)
+{
+ return log1p(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 2.32e-20
+ */
+static const long double P[] = {
+ 4.5270000862445199635215E-5L,
+ 4.9854102823193375972212E-1L,
+ 6.5787325942061044846969E0L,
+ 2.9911919328553073277375E1L,
+ 6.0949667980987787057556E1L,
+ 5.7112963590585538103336E1L,
+ 2.0039553499201281259648E1L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0,*/
+ 1.5062909083469192043167E1L,
+ 8.3047565967967209469434E1L,
+ 2.2176239823732856465394E2L,
+ 3.0909872225312059774938E2L,
+ 2.1642788614495947685003E2L,
+ 6.0118660497603843919306E1L,
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.16e-22
+ */
+static const long double R[4] = {
+ 1.9757429581415468984296E-3L,
+-7.1990767473014147232598E-1L,
+ 1.0777257190312272158094E1L,
+-3.5717684488096787370998E1L,
+};
+static const long double S[4] = {
+/* 1.00000000000000000000E0L,*/
+-2.6201045551331104417768E1L,
+ 1.9361891836232102174846E2L,
+-4.2861221385716144629696E2L,
+};
+static const long double C1 = 6.9314575195312500000000E-1L;
+static const long double C2 = 1.4286068203094172321215E-6L;
+
+#define SQRTH 0.70710678118654752440L
+
+long double log1pl(long double xm1)
+{
+ long double x, y, z;
+ int e;
+
+ if (isnan(xm1))
+ return xm1;
+ if (xm1 == INFINITY)
+ return xm1;
+ if (xm1 == 0.0)
+ return xm1;
+
+ x = xm1 + 1.0;
+
+ /* Test for domain errors. */
+ if (x <= 0.0) {
+ if (x == 0.0)
+ return -1/(x*x); /* -inf with divbyzero */
+ return 0/0.0f; /* nan with invalid */
+ }
+
+ /* Separate mantissa from exponent.
+ Use frexp so that denormal numbers will be handled properly. */
+ x = frexpl(x, &e);
+
+ /* logarithm using log(x) = z + z^3 P(z)/Q(z),
+ where z = 2(x-1)/x+1) */
+ if (e > 2 || e < -2) {
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+ e -= 1;
+ z = x - 0.5;
+ y = 0.5 * z + 0.5;
+ } else { /* 2 (x-1)/(x+1) */
+ z = x - 0.5;
+ z -= 0.5;
+ y = 0.5 * x + 0.5;
+ }
+ x = z / y;
+ z = x*x;
+ z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+ z = z + e * C2;
+ z = z + x;
+ z = z + e * C1;
+ return z;
+ }
+
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+ if (x < SQRTH) {
+ e -= 1;
+ if (e != 0)
+ x = 2.0 * x - 1.0;
+ else
+ x = xm1;
+ } else {
+ if (e != 0)
+ x = x - 1.0;
+ else
+ x = xm1;
+ }
+ z = x*x;
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
+ y = y + e * C2;
+ z = y - 0.5 * z;
+ z = z + x;
+ z = z + e * C1;
+ return z;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double log1pl(long double x)
+{
+ return log1p(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log2.c b/lib/mlibc/options/ansi/musl-generic-math/log2.c
new file mode 100644
index 0000000..0aafad4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log2.c
@@ -0,0 +1,122 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 2 logarithm of x. See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ * log2(x) = (f - f*f/2 + r)/log(2) + k
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const double
+ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
+ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log2(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
+ uint32_t hx;
+ int k;
+
+ hx = u.i>>32;
+ k = 0;
+ if (hx < 0x00100000 || hx>>31) {
+ if (u.i<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (hx>>31)
+ return (x-x)/0.0; /* log(-#) = NaN */
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= 0x1p54;
+ u.f = x;
+ hx = u.i>>32;
+ } else if (hx >= 0x7ff00000) {
+ return x;
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (int)(hx>>20) - 0x3ff;
+ hx = (hx&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+ x = u.f;
+
+ f = x - 1.0;
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+
+ /*
+ * f-hfsq must (for args near 1) be evaluated in extra precision
+ * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
+ * This is fairly efficient since f-hfsq only depends on f, so can
+ * be evaluated in parallel with R. Not combining hfsq with R also
+ * keeps R small (though not as small as a true `lo' term would be),
+ * so that extra precision is not needed for terms involving R.
+ *
+ * Compiler bugs involving extra precision used to break Dekker's
+ * theorem for spitting f-hfsq as hi+lo, unless double_t was used
+ * or the multi-precision calculations were avoided when double_t
+ * has extra precision. These problems are now automatically
+ * avoided as a side effect of the optimization of combining the
+ * Dekker splitting step with the clear-low-bits step.
+ *
+ * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
+ * precision to avoid a very large cancellation when x is very near
+ * these values. Unlike the above cancellations, this problem is
+ * specific to base 2. It is strange that adding +-1 is so much
+ * harder than adding +-ln2 or +-log10_2.
+ *
+ * This uses Dekker's theorem to normalize y+val_hi, so the
+ * compiler bugs are back in some configurations, sigh. And I
+ * don't want to used double_t to avoid them, since that gives a
+ * pessimization and the support for avoiding the pessimization
+ * is not yet available.
+ *
+ * The multi-precision calculations for the multiplications are
+ * routine.
+ */
+
+ /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+ hi = f - hfsq;
+ u.f = hi;
+ u.i &= (uint64_t)-1<<32;
+ hi = u.f;
+ lo = f - hi - hfsq + s*(hfsq+R);
+
+ val_hi = hi*ivln2hi;
+ val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
+
+ /* spadd(val_hi, val_lo, y), except for not using double_t: */
+ y = k;
+ w = y + val_hi;
+ val_lo += (y - w) + val_hi;
+ val_hi = w;
+
+ return val_lo + val_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log2f.c b/lib/mlibc/options/ansi/musl-generic-math/log2f.c
new file mode 100644
index 0000000..b3e305f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log2f.c
@@ -0,0 +1,74 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log2.c.
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const float
+ivln2hi = 1.4428710938e+00, /* 0x3fb8b000 */
+ivln2lo = -1.7605285393e-04, /* 0xb9389ad4 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+
+float log2f(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ float_t hfsq,f,s,z,R,w,t1,t2,hi,lo;
+ uint32_t ix;
+ int k;
+
+ ix = u.i;
+ k = 0;
+ if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
+ if (ix<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (ix>>31)
+ return (x-x)/0.0f; /* log(-#) = NaN */
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= 0x1p25f;
+ u.f = x;
+ ix = u.i;
+ } else if (ix >= 0x7f800000) {
+ return x;
+ } else if (ix == 0x3f800000)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += (int)(ix>>23) - 0x7f;
+ ix = (ix&0x007fffff) + 0x3f3504f3;
+ u.i = ix;
+ x = u.f;
+
+ f = x - 1.0f;
+ s = f/(2.0f + f);
+ z = s*s;
+ w = z*z;
+ t1= w*(Lg2+w*Lg4);
+ t2= z*(Lg1+w*Lg3);
+ R = t2 + t1;
+ hfsq = 0.5f*f*f;
+
+ hi = f - hfsq;
+ u.f = hi;
+ u.i &= 0xfffff000;
+ hi = u.f;
+ lo = f - hi - hfsq + s*(hfsq+R);
+ return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + k;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log2l.c b/lib/mlibc/options/ansi/musl-generic-math/log2l.c
new file mode 100644
index 0000000..722b451
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log2l.c
@@ -0,0 +1,182 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log2l.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Base 2 logarithm, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, log2l();
+ *
+ * y = log2l( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base 2 logarithm of x.
+ *
+ * The argument is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the (natural)
+ * logarithm of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/x+1),
+ *
+ * log(x) = z + z**3 P(z)/Q(z).
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20
+ * IEEE exp(+-10000) 70000 5.4e-20 2.3e-20
+ *
+ * In the tests over the interval exp(+-10000), the logarithms
+ * of the random arguments were uniformly distributed over
+ * [-10000, +10000].
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double log2l(long double x)
+{
+ return log2(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.2e-22
+ */
+static const long double P[] = {
+ 4.9962495940332550844739E-1L,
+ 1.0767376367209449010438E1L,
+ 7.7671073698359539859595E1L,
+ 2.5620629828144409632571E2L,
+ 4.2401812743503691187826E2L,
+ 3.4258224542413922935104E2L,
+ 1.0747524399916215149070E2L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0,*/
+ 2.3479774160285863271658E1L,
+ 1.9444210022760132894510E2L,
+ 7.7952888181207260646090E2L,
+ 1.6911722418503949084863E3L,
+ 2.0307734695595183428202E3L,
+ 1.2695660352705325274404E3L,
+ 3.2242573199748645407652E2L,
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.16e-22
+ */
+static const long double R[4] = {
+ 1.9757429581415468984296E-3L,
+-7.1990767473014147232598E-1L,
+ 1.0777257190312272158094E1L,
+-3.5717684488096787370998E1L,
+};
+static const long double S[4] = {
+/* 1.00000000000000000000E0L,*/
+-2.6201045551331104417768E1L,
+ 1.9361891836232102174846E2L,
+-4.2861221385716144629696E2L,
+};
+/* log2(e) - 1 */
+#define LOG2EA 4.4269504088896340735992e-1L
+
+#define SQRTH 0.70710678118654752440L
+
+long double log2l(long double x)
+{
+ long double y, z;
+ int e;
+
+ if (isnan(x))
+ return x;
+ if (x == INFINITY)
+ return x;
+ if (x <= 0.0) {
+ if (x == 0.0)
+ return -1/(x*x); /* -inf with divbyzero */
+ return 0/0.0f; /* nan with invalid */
+ }
+
+ /* separate mantissa from exponent */
+ /* Note, frexp is used so that denormal numbers
+ * will be handled properly.
+ */
+ x = frexpl(x, &e);
+
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+ * where z = 2(x-1)/x+1)
+ */
+ if (e > 2 || e < -2) {
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+ e -= 1;
+ z = x - 0.5;
+ y = 0.5 * z + 0.5;
+ } else { /* 2 (x-1)/(x+1) */
+ z = x - 0.5;
+ z -= 0.5;
+ y = 0.5 * x + 0.5;
+ }
+ x = z / y;
+ z = x*x;
+ y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+ goto done;
+ }
+
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+ if (x < SQRTH) {
+ e -= 1;
+ x = 2.0*x - 1.0;
+ } else {
+ x = x - 1.0;
+ }
+ z = x*x;
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
+ y = y - 0.5*z;
+
+done:
+ /* Multiply log of fraction by log2(e)
+ * and base 2 exponent by 1
+ *
+ * ***CAUTION***
+ *
+ * This sequence of operations is critical and it may
+ * be horribly defeated by some compiler optimizers.
+ */
+ z = y * LOG2EA;
+ z += x * LOG2EA;
+ z += y;
+ z += x;
+ z += e;
+ return z;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double log2l(long double x)
+{
+ return log2(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logb.c b/lib/mlibc/options/ansi/musl-generic-math/logb.c
new file mode 100644
index 0000000..7f8bdfa
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/logb.c
@@ -0,0 +1,17 @@
+#include <math.h>
+
+/*
+special cases:
+ logb(+-0) = -inf, and raise divbyzero
+ logb(+-inf) = +inf
+ logb(nan) = nan
+*/
+
+double logb(double x)
+{
+ if (!isfinite(x))
+ return x * x;
+ if (x == 0)
+ return -1/(x*x);
+ return ilogb(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logbf.c b/lib/mlibc/options/ansi/musl-generic-math/logbf.c
new file mode 100644
index 0000000..a0a0b5e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/logbf.c
@@ -0,0 +1,10 @@
+#include <math.h>
+
+float logbf(float x)
+{
+ if (!isfinite(x))
+ return x * x;
+ if (x == 0)
+ return -1/(x*x);
+ return ilogbf(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logbl.c b/lib/mlibc/options/ansi/musl-generic-math/logbl.c
new file mode 100644
index 0000000..962973a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/logbl.c
@@ -0,0 +1,16 @@
+#include <math.h>
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double logbl(long double x)
+{
+ return logb(x);
+}
+#else
+long double logbl(long double x)
+{
+ if (!isfinite(x))
+ return x * x;
+ if (x == 0)
+ return -1/(x*x);
+ return ilogbl(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logf.c b/lib/mlibc/options/ansi/musl-generic-math/logf.c
new file mode 100644
index 0000000..52230a1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/logf.c
@@ -0,0 +1,69 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const float
+ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+
+float logf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ float_t hfsq,f,s,z,R,w,t1,t2,dk;
+ uint32_t ix;
+ int k;
+
+ ix = u.i;
+ k = 0;
+ if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
+ if (ix<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (ix>>31)
+ return (x-x)/0.0f; /* log(-#) = NaN */
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= 0x1p25f;
+ u.f = x;
+ ix = u.i;
+ } else if (ix >= 0x7f800000) {
+ return x;
+ } else if (ix == 0x3f800000)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += (int)(ix>>23) - 0x7f;
+ ix = (ix&0x007fffff) + 0x3f3504f3;
+ u.i = ix;
+ x = u.f;
+
+ f = x - 1.0f;
+ s = f/(2.0f + f);
+ z = s*s;
+ w = z*z;
+ t1= w*(Lg2+w*Lg4);
+ t2= z*(Lg1+w*Lg3);
+ R = t2 + t1;
+ hfsq = 0.5f*f*f;
+ dk = k;
+ return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logl.c b/lib/mlibc/options/ansi/musl-generic-math/logl.c
new file mode 100644
index 0000000..5d53659
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/logl.c
@@ -0,0 +1,175 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Natural logarithm, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, logl();
+ *
+ * y = logl( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base e (2.718...) logarithm of x.
+ *
+ * The argument is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the logarithm
+ * of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/(x+1),
+ *
+ * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
+ * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
+ *
+ * In the tests over the interval exp(+-10000), the logarithms
+ * of the random arguments were uniformly distributed over
+ * [-10000, +10000].
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double logl(long double x)
+{
+ return log(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 2.32e-20
+ */
+static const long double P[] = {
+ 4.5270000862445199635215E-5L,
+ 4.9854102823193375972212E-1L,
+ 6.5787325942061044846969E0L,
+ 2.9911919328553073277375E1L,
+ 6.0949667980987787057556E1L,
+ 5.7112963590585538103336E1L,
+ 2.0039553499201281259648E1L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0,*/
+ 1.5062909083469192043167E1L,
+ 8.3047565967967209469434E1L,
+ 2.2176239823732856465394E2L,
+ 3.0909872225312059774938E2L,
+ 2.1642788614495947685003E2L,
+ 6.0118660497603843919306E1L,
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.16e-22
+ */
+static const long double R[4] = {
+ 1.9757429581415468984296E-3L,
+-7.1990767473014147232598E-1L,
+ 1.0777257190312272158094E1L,
+-3.5717684488096787370998E1L,
+};
+static const long double S[4] = {
+/* 1.00000000000000000000E0L,*/
+-2.6201045551331104417768E1L,
+ 1.9361891836232102174846E2L,
+-4.2861221385716144629696E2L,
+};
+static const long double C1 = 6.9314575195312500000000E-1L;
+static const long double C2 = 1.4286068203094172321215E-6L;
+
+#define SQRTH 0.70710678118654752440L
+
+long double logl(long double x)
+{
+ long double y, z;
+ int e;
+
+ if (isnan(x))
+ return x;
+ if (x == INFINITY)
+ return x;
+ if (x <= 0.0) {
+ if (x == 0.0)
+ return -1/(x*x); /* -inf with divbyzero */
+ return 0/0.0f; /* nan with invalid */
+ }
+
+ /* separate mantissa from exponent */
+ /* Note, frexp is used so that denormal numbers
+ * will be handled properly.
+ */
+ x = frexpl(x, &e);
+
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+ * where z = 2(x-1)/(x+1)
+ */
+ if (e > 2 || e < -2) {
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+ e -= 1;
+ z = x - 0.5;
+ y = 0.5 * z + 0.5;
+ } else { /* 2 (x-1)/(x+1) */
+ z = x - 0.5;
+ z -= 0.5;
+ y = 0.5 * x + 0.5;
+ }
+ x = z / y;
+ z = x*x;
+ z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+ z = z + e * C2;
+ z = z + x;
+ z = z + e * C1;
+ return z;
+ }
+
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+ if (x < SQRTH) {
+ e -= 1;
+ x = 2.0*x - 1.0;
+ } else {
+ x = x - 1.0;
+ }
+ z = x*x;
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
+ y = y + e * C2;
+ z = y - 0.5*z;
+ /* Note, the sum of above terms does not exceed x/4,
+ * so it contributes at most about 1/4 lsb to the error.
+ */
+ z = z + x;
+ z = z + e * C1; /* This sum has an error of 1/2 lsb. */
+ return z;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double logl(long double x)
+{
+ return log(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lrint.c b/lib/mlibc/options/ansi/musl-generic-math/lrint.c
new file mode 100644
index 0000000..bdca8b7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lrint.c
@@ -0,0 +1,46 @@
+#include <limits.h>
+#include <fenv.h>
+#include "libm.h"
+
+/*
+If the result cannot be represented (overflow, nan), then
+lrint raises the invalid exception.
+
+Otherwise if the input was not an integer then the inexact
+exception is raised.
+
+C99 is a bit vague about whether inexact exception is
+allowed to be raised when invalid is raised.
+(F.9 explicitly allows spurious inexact exceptions, F.9.6.5
+does not make it clear if that rule applies to lrint, but
+IEEE 754r 7.8 seems to forbid spurious inexact exception in
+the ineger conversion functions)
+
+So we try to make sure that no spurious inexact exception is
+raised in case of an overflow.
+
+If the bit size of long > precision of double, then there
+cannot be inexact rounding in case the result overflows,
+otherwise LONG_MAX and LONG_MIN can be represented exactly
+as a double.
+*/
+
+#if LONG_MAX < 1U<<53 && defined(FE_INEXACT)
+long lrint(double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+ x = rint(x);
+ if (!e && (x > LONG_MAX || x < LONG_MIN))
+ feclearexcept(FE_INEXACT);
+ /* conversion */
+ return x;
+}
+#else
+long lrint(double x)
+{
+ return rint(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lrintf.c b/lib/mlibc/options/ansi/musl-generic-math/lrintf.c
new file mode 100644
index 0000000..ca0b6a4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lrintf.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+/* uses LONG_MAX > 2^24, see comments in lrint.c */
+
+long lrintf(float x)
+{
+ return rintf(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lrintl.c b/lib/mlibc/options/ansi/musl-generic-math/lrintl.c
new file mode 100644
index 0000000..b2a8106
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lrintl.c
@@ -0,0 +1,36 @@
+#include <limits.h>
+#include <fenv.h>
+#include "libm.h"
+
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long lrintl(long double x)
+{
+ return lrint(x);
+}
+#elif defined(FE_INEXACT)
+/*
+see comments in lrint.c
+
+Note that if LONG_MAX == 0x7fffffffffffffff && LDBL_MANT_DIG == 64
+then x == 2**63 - 0.5 is the only input that overflows and
+raises inexact (with tonearest or upward rounding mode)
+*/
+long lrintl(long double x)
+{
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+ x = rintl(x);
+ if (!e && (x > LONG_MAX || x < LONG_MIN))
+ feclearexcept(FE_INEXACT);
+ /* conversion */
+ return x;
+}
+#else
+long lrintl(long double x)
+{
+ return rintl(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lround.c b/lib/mlibc/options/ansi/musl-generic-math/lround.c
new file mode 100644
index 0000000..b8b7954
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lround.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long lround(double x)
+{
+ return round(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lroundf.c b/lib/mlibc/options/ansi/musl-generic-math/lroundf.c
new file mode 100644
index 0000000..c4707e7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lroundf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long lroundf(float x)
+{
+ return roundf(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lroundl.c b/lib/mlibc/options/ansi/musl-generic-math/lroundl.c
new file mode 100644
index 0000000..094fdf6
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/lroundl.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long lroundl(long double x)
+{
+ return roundl(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/modf.c b/lib/mlibc/options/ansi/musl-generic-math/modf.c
new file mode 100644
index 0000000..1c8a1db
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/modf.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+double modf(double x, double *iptr)
+{
+ union {double f; uint64_t i;} u = {x};
+ uint64_t mask;
+ int e = (int)(u.i>>52 & 0x7ff) - 0x3ff;
+
+ /* no fractional part */
+ if (e >= 52) {
+ *iptr = x;
+ if (e == 0x400 && u.i<<12 != 0) /* nan */
+ return x;
+ u.i &= 1ULL<<63;
+ return u.f;
+ }
+
+ /* no integral part*/
+ if (e < 0) {
+ u.i &= 1ULL<<63;
+ *iptr = u.f;
+ return x;
+ }
+
+ mask = -1ULL>>12>>e;
+ if ((u.i & mask) == 0) {
+ *iptr = x;
+ u.i &= 1ULL<<63;
+ return u.f;
+ }
+ u.i &= ~mask;
+ *iptr = u.f;
+ return x - u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/modff.c b/lib/mlibc/options/ansi/musl-generic-math/modff.c
new file mode 100644
index 0000000..639514e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/modff.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+float modff(float x, float *iptr)
+{
+ union {float f; uint32_t i;} u = {x};
+ uint32_t mask;
+ int e = (int)(u.i>>23 & 0xff) - 0x7f;
+
+ /* no fractional part */
+ if (e >= 23) {
+ *iptr = x;
+ if (e == 0x80 && u.i<<9 != 0) { /* nan */
+ return x;
+ }
+ u.i &= 0x80000000;
+ return u.f;
+ }
+ /* no integral part */
+ if (e < 0) {
+ u.i &= 0x80000000;
+ *iptr = u.f;
+ return x;
+ }
+
+ mask = 0x007fffff>>e;
+ if ((u.i & mask) == 0) {
+ *iptr = x;
+ u.i &= 0x80000000;
+ return u.f;
+ }
+ u.i &= ~mask;
+ *iptr = u.f;
+ return x - u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/modfl.c b/lib/mlibc/options/ansi/musl-generic-math/modfl.c
new file mode 100644
index 0000000..a47b192
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/modfl.c
@@ -0,0 +1,53 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double modfl(long double x, long double *iptr)
+{
+ double d;
+ long double r;
+
+ r = modf(x, &d);
+ *iptr = d;
+ return r;
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double modfl(long double x, long double *iptr)
+{
+ union ldshape u = {x};
+ int e = (u.i.se & 0x7fff) - 0x3fff;
+ int s = u.i.se >> 15;
+ long double absx;
+ long double y;
+
+ /* no fractional part */
+ if (e >= LDBL_MANT_DIG-1) {
+ *iptr = x;
+ if (isnan(x))
+ return x;
+ return s ? -0.0 : 0.0;
+ }
+
+ /* no integral part*/
+ if (e < 0) {
+ *iptr = s ? -0.0 : 0.0;
+ return x;
+ }
+
+ /* raises spurious inexact */
+ absx = s ? -x : x;
+ y = absx + toint - toint - absx;
+ if (y == 0) {
+ *iptr = x;
+ return s ? -0.0 : 0.0;
+ }
+ if (y > 0)
+ y -= 1;
+ if (s)
+ y = -y;
+ *iptr = x + y;
+ return -y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nan.c b/lib/mlibc/options/ansi/musl-generic-math/nan.c
new file mode 100644
index 0000000..9e0826c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nan.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+double nan(const char *s)
+{
+ return NAN;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nanf.c b/lib/mlibc/options/ansi/musl-generic-math/nanf.c
new file mode 100644
index 0000000..752ce54
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nanf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+float nanf(const char *s)
+{
+ return NAN;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nanl.c b/lib/mlibc/options/ansi/musl-generic-math/nanl.c
new file mode 100644
index 0000000..969af56
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nanl.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long double nanl(const char *s)
+{
+ return NAN;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nearbyint.c b/lib/mlibc/options/ansi/musl-generic-math/nearbyint.c
new file mode 100644
index 0000000..f4e8aac
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nearbyint.c
@@ -0,0 +1,20 @@
+#include <fenv.h>
+#include <math.h>
+
+/* nearbyint is the same as rint, but it must not raise the inexact exception */
+
+double nearbyint(double x)
+{
+#ifdef FE_INEXACT
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+#endif
+ x = rint(x);
+#ifdef FE_INEXACT
+ if (!e)
+ feclearexcept(FE_INEXACT);
+#endif
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nearbyintf.c b/lib/mlibc/options/ansi/musl-generic-math/nearbyintf.c
new file mode 100644
index 0000000..092e9ff
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nearbyintf.c
@@ -0,0 +1,18 @@
+#include <fenv.h>
+#include <math.h>
+
+float nearbyintf(float x)
+{
+#ifdef FE_INEXACT
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+#endif
+ x = rintf(x);
+#ifdef FE_INEXACT
+ if (!e)
+ feclearexcept(FE_INEXACT);
+#endif
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nearbyintl.c b/lib/mlibc/options/ansi/musl-generic-math/nearbyintl.c
new file mode 100644
index 0000000..8285249
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nearbyintl.c
@@ -0,0 +1,26 @@
+#include <math.h>
+#include <float.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double nearbyintl(long double x)
+{
+ return nearbyint(x);
+}
+#else
+#include <fenv.h>
+long double nearbyintl(long double x)
+{
+#ifdef FE_INEXACT
+ #pragma STDC FENV_ACCESS ON
+ int e;
+
+ e = fetestexcept(FE_INEXACT);
+#endif
+ x = rintl(x);
+#ifdef FE_INEXACT
+ if (!e)
+ feclearexcept(FE_INEXACT);
+#endif
+ return x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nextafter.c b/lib/mlibc/options/ansi/musl-generic-math/nextafter.c
new file mode 100644
index 0000000..ab5795a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nextafter.c
@@ -0,0 +1,31 @@
+#include "libm.h"
+
+double nextafter(double x, double y)
+{
+ union {double f; uint64_t i;} ux={x}, uy={y};
+ uint64_t ax, ay;
+ int e;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (ux.i == uy.i)
+ return y;
+ ax = ux.i & -1ULL/2;
+ ay = uy.i & -1ULL/2;
+ if (ax == 0) {
+ if (ay == 0)
+ return y;
+ ux.i = (uy.i & 1ULL<<63) | 1;
+ } else if (ax > ay || ((ux.i ^ uy.i) & 1ULL<<63))
+ ux.i--;
+ else
+ ux.i++;
+ e = ux.i >> 52 & 0x7ff;
+ /* raise overflow if ux.f is infinite and x is finite */
+ if (e == 0x7ff)
+ FORCE_EVAL(x+x);
+ /* raise underflow if ux.f is subnormal or zero */
+ if (e == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nextafterf.c b/lib/mlibc/options/ansi/musl-generic-math/nextafterf.c
new file mode 100644
index 0000000..75a09f7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nextafterf.c
@@ -0,0 +1,30 @@
+#include "libm.h"
+
+float nextafterf(float x, float y)
+{
+ union {float f; uint32_t i;} ux={x}, uy={y};
+ uint32_t ax, ay, e;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (ux.i == uy.i)
+ return y;
+ ax = ux.i & 0x7fffffff;
+ ay = uy.i & 0x7fffffff;
+ if (ax == 0) {
+ if (ay == 0)
+ return y;
+ ux.i = (uy.i & 0x80000000) | 1;
+ } else if (ax > ay || ((ux.i ^ uy.i) & 0x80000000))
+ ux.i--;
+ else
+ ux.i++;
+ e = ux.i & 0x7f800000;
+ /* raise overflow if ux.f is infinite and x is finite */
+ if (e == 0x7f800000)
+ FORCE_EVAL(x+x);
+ /* raise underflow if ux.f is subnormal or zero */
+ if (e == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nextafterl.c b/lib/mlibc/options/ansi/musl-generic-math/nextafterl.c
new file mode 100644
index 0000000..37e858f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nextafterl.c
@@ -0,0 +1,75 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double nextafterl(long double x, long double y)
+{
+ return nextafter(x, y);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+long double nextafterl(long double x, long double y)
+{
+ union ldshape ux, uy;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (x == y)
+ return y;
+ ux.f = x;
+ if (x == 0) {
+ uy.f = y;
+ ux.i.m = 1;
+ ux.i.se = uy.i.se & 0x8000;
+ } else if ((x < y) == !(ux.i.se & 0x8000)) {
+ ux.i.m++;
+ if (ux.i.m << 1 == 0) {
+ ux.i.m = 1ULL << 63;
+ ux.i.se++;
+ }
+ } else {
+ if (ux.i.m << 1 == 0) {
+ ux.i.se--;
+ if (ux.i.se)
+ ux.i.m = 0;
+ }
+ ux.i.m--;
+ }
+ /* raise overflow if ux is infinite and x is finite */
+ if ((ux.i.se & 0x7fff) == 0x7fff)
+ return x + x;
+ /* raise underflow if ux is subnormal or zero */
+ if ((ux.i.se & 0x7fff) == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+long double nextafterl(long double x, long double y)
+{
+ union ldshape ux, uy;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (x == y)
+ return y;
+ ux.f = x;
+ if (x == 0) {
+ uy.f = y;
+ ux.i.lo = 1;
+ ux.i.se = uy.i.se & 0x8000;
+ } else if ((x < y) == !(ux.i.se & 0x8000)) {
+ ux.i2.lo++;
+ if (ux.i2.lo == 0)
+ ux.i2.hi++;
+ } else {
+ if (ux.i2.lo == 0)
+ ux.i2.hi--;
+ ux.i2.lo--;
+ }
+ /* raise overflow if ux is infinite and x is finite */
+ if ((ux.i.se & 0x7fff) == 0x7fff)
+ return x + x;
+ /* raise underflow if ux is subnormal or zero */
+ if ((ux.i.se & 0x7fff) == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nexttoward.c b/lib/mlibc/options/ansi/musl-generic-math/nexttoward.c
new file mode 100644
index 0000000..827ee5c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nexttoward.c
@@ -0,0 +1,42 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+double nexttoward(double x, long double y)
+{
+ return nextafter(x, y);
+}
+#else
+double nexttoward(double x, long double y)
+{
+ union {double f; uint64_t i;} ux = {x};
+ int e;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (x == y)
+ return y;
+ if (x == 0) {
+ ux.i = 1;
+ if (signbit(y))
+ ux.i |= 1ULL<<63;
+ } else if (x < y) {
+ if (signbit(x))
+ ux.i--;
+ else
+ ux.i++;
+ } else {
+ if (signbit(x))
+ ux.i++;
+ else
+ ux.i--;
+ }
+ e = ux.i>>52 & 0x7ff;
+ /* raise overflow if ux.f is infinite and x is finite */
+ if (e == 0x7ff)
+ FORCE_EVAL(x+x);
+ /* raise underflow if ux.f is subnormal or zero */
+ if (e == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nexttowardf.c b/lib/mlibc/options/ansi/musl-generic-math/nexttowardf.c
new file mode 100644
index 0000000..bbf172f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nexttowardf.c
@@ -0,0 +1,35 @@
+#include "libm.h"
+
+float nexttowardf(float x, long double y)
+{
+ union {float f; uint32_t i;} ux = {x};
+ uint32_t e;
+
+ if (isnan(x) || isnan(y))
+ return x + y;
+ if (x == y)
+ return y;
+ if (x == 0) {
+ ux.i = 1;
+ if (signbit(y))
+ ux.i |= 0x80000000;
+ } else if (x < y) {
+ if (signbit(x))
+ ux.i--;
+ else
+ ux.i++;
+ } else {
+ if (signbit(x))
+ ux.i++;
+ else
+ ux.i--;
+ }
+ e = ux.i & 0x7f800000;
+ /* raise overflow if ux.f is infinite and x is finite */
+ if (e == 0x7f800000)
+ FORCE_EVAL(x+x);
+ /* raise underflow if ux.f is subnormal or zero */
+ if (e == 0)
+ FORCE_EVAL(x*x + ux.f*ux.f);
+ return ux.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/nexttowardl.c b/lib/mlibc/options/ansi/musl-generic-math/nexttowardl.c
new file mode 100644
index 0000000..67a6340
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/nexttowardl.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+long double nexttowardl(long double x, long double y)
+{
+ return nextafterl(x, y);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/pow.c b/lib/mlibc/options/ansi/musl-generic-math/pow.c
new file mode 100644
index 0000000..3ddc1b6
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/pow.c
@@ -0,0 +1,328 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* pow(x,y) return x**y
+ *
+ * n
+ * Method: Let x = 2 * (1+f)
+ * 1. Compute and return log2(x) in two pieces:
+ * log2(x) = w1 + w2,
+ * where w1 has 53-24 = 29 bit trailing zeros.
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * arithmetic, where |y'|<=0.5.
+ * 3. Return x**y = 2**n*exp(y'*log2)
+ *
+ * Special cases:
+ * 1. (anything) ** 0 is 1
+ * 2. 1 ** (anything) is 1
+ * 3. (anything except 1) ** NAN is NAN
+ * 4. NAN ** (anything except 0) is NAN
+ * 5. +-(|x| > 1) ** +INF is +INF
+ * 6. +-(|x| > 1) ** -INF is +0
+ * 7. +-(|x| < 1) ** +INF is +0
+ * 8. +-(|x| < 1) ** -INF is +INF
+ * 9. -1 ** +-INF is 1
+ * 10. +0 ** (+anything except 0, NAN) is +0
+ * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+ * 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
+ * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
+ * 14. -0 ** (+odd integer) is -0
+ * 15. -0 ** (-odd integer) is -INF, raise divbyzero
+ * 16. +INF ** (+anything except 0,NAN) is +INF
+ * 17. +INF ** (-anything except 0,NAN) is +0
+ * 18. -INF ** (+odd integer) is -INF
+ * 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+ * 20. (anything) ** 1 is (anything)
+ * 21. (anything) ** -1 is 1/(anything)
+ * 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ * 23. (-anything except 0 and inf) ** (non-integer) is NAN
+ *
+ * Accuracy:
+ * pow(x,y) returns x**y nearly rounded. In particular
+ * pow(integer,integer)
+ * always returns the correct integer provided it is
+ * representable.
+ *
+ * Constants :
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "libm.h"
+
+static const double
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
+dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
+two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
+huge = 1.0e300,
+tiny = 1.0e-300,
+/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
+L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
+L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
+L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
+L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
+L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
+lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
+lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
+lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
+ovt = 8.0085662595372944372e-017, /* -(1024-log2(ovfl+.5ulp)) */
+cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
+cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
+cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
+ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
+ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
+ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
+
+double pow(double x, double y)
+{
+ double z,ax,z_h,z_l,p_h,p_l;
+ double y1,t1,t2,r,s,t,u,v,w;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy;
+ uint32_t lx,ly;
+
+ EXTRACT_WORDS(hx, lx, x);
+ EXTRACT_WORDS(hy, ly, y);
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x**0 = 1, even if x is NaN */
+ if ((iy|ly) == 0)
+ return 1.0;
+ /* 1**y = 1, even if y is NaN */
+ if (hx == 0x3ff00000 && lx == 0)
+ return 1.0;
+ /* NaN if either arg is NaN */
+ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) ||
+ iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0))
+ return x + y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if (hx < 0) {
+ if (iy >= 0x43400000)
+ yisint = 2; /* even integer y */
+ else if (iy >= 0x3ff00000) {
+ k = (iy>>20) - 0x3ff; /* exponent */
+ if (k > 20) {
+ uint32_t j = ly>>(52-k);
+ if ((j<<(52-k)) == ly)
+ yisint = 2 - (j&1);
+ } else if (ly == 0) {
+ uint32_t j = iy>>(20-k);
+ if ((j<<(20-k)) == iy)
+ yisint = 2 - (j&1);
+ }
+ }
+ }
+
+ /* special value of y */
+ if (ly == 0) {
+ if (iy == 0x7ff00000) { /* y is +-inf */
+ if (((ix-0x3ff00000)|lx) == 0) /* (-1)**+-inf is 1 */
+ return 1.0;
+ else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
+ return hy >= 0 ? y : 0.0;
+ else /* (|x|<1)**+-inf = 0,inf */
+ return hy >= 0 ? 0.0 : -y;
+ }
+ if (iy == 0x3ff00000) { /* y is +-1 */
+ if (hy >= 0)
+ return x;
+ y = 1/x;
+#if FLT_EVAL_METHOD!=0
+ {
+ union {double f; uint64_t i;} u = {y};
+ uint64_t i = u.i & -1ULL/2;
+ if (i>>52 == 0 && (i&(i-1)))
+ FORCE_EVAL((float)y);
+ }
+#endif
+ return y;
+ }
+ if (hy == 0x40000000) /* y is 2 */
+ return x*x;
+ if (hy == 0x3fe00000) { /* y is 0.5 */
+ if (hx >= 0) /* x >= +0 */
+ return sqrt(x);
+ }
+ }
+
+ ax = fabs(x);
+ /* special value of x */
+ if (lx == 0) {
+ if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { /* x is +-0,+-inf,+-1 */
+ z = ax;
+ if (hy < 0) /* z = (1/|x|) */
+ z = 1.0/z;
+ if (hx < 0) {
+ if (((ix-0x3ff00000)|yisint) == 0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if (yisint == 1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ }
+
+ s = 1.0; /* sign of result */
+ if (hx < 0) {
+ if (yisint == 0) /* (x<0)**(non-int) is NaN */
+ return (x-x)/(x-x);
+ if (yisint == 1) /* (x<0)**(odd int) */
+ s = -1.0;
+ }
+
+ /* |y| is huge */
+ if (iy > 0x41e00000) { /* if |y| > 2**31 */
+ if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
+ if (ix <= 0x3fefffff)
+ return hy < 0 ? huge*huge : tiny*tiny;
+ if (ix >= 0x3ff00000)
+ return hy > 0 ? huge*huge : tiny*tiny;
+ }
+ /* over/underflow if x is not close to one */
+ if (ix < 0x3fefffff)
+ return hy < 0 ? s*huge*huge : s*tiny*tiny;
+ if (ix > 0x3ff00000)
+ return hy > 0 ? s*huge*huge : s*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax - 1.0; /* t has 20 trailing zeros */
+ w = (t*t)*(0.5 - t*(0.3333333333333333333333-t*0.25));
+ u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
+ v = t*ivln2_l - w*ivln2;
+ t1 = u + v;
+ SET_LOW_WORD(t1, 0);
+ t2 = v - (t1-u);
+ } else {
+ double ss,s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ if (ix < 0x00100000) {
+ ax *= two53;
+ n -= 53;
+ GET_HIGH_WORD(ix,ax);
+ }
+ n += ((ix)>>20) - 0x3ff;
+ j = ix & 0x000fffff;
+ /* determine interval */
+ ix = j | 0x3ff00000; /* normalize ix */
+ if (j <= 0x3988E) /* |x|<sqrt(3/2) */
+ k = 0;
+ else if (j < 0xBB67A) /* |x|<sqrt(3) */
+ k = 1;
+ else {
+ k = 0;
+ n += 1;
+ ix -= 0x00100000;
+ }
+ SET_HIGH_WORD(ax, ix);
+
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = 1.0/(ax+bp[k]);
+ ss = u*v;
+ s_h = ss;
+ SET_LOW_WORD(s_h, 0);
+ /* t_h=ax+bp[k] High */
+ t_h = 0.0;
+ SET_HIGH_WORD(t_h, ((ix>>1)|0x20000000) + 0x00080000 + (k<<18));
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+ /* compute log(ax) */
+ s2 = ss*ss;
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+ r += s_l*(s_h+ss);
+ s2 = s_h*s_h;
+ t_h = 3.0 + s2 + r;
+ SET_LOW_WORD(t_h, 0);
+ t_l = r - ((t_h-3.0)-s2);
+ /* u+v = ss*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h + t_l*ss;
+ /* 2/(3log2)*(ss+...) */
+ p_h = u + v;
+ SET_LOW_WORD(p_h, 0);
+ p_l = v - (p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp + dp_l[k];
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (double)n;
+ t1 = ((z_h + z_l) + dp_h[k]) + t;
+ SET_LOW_WORD(t1, 0);
+ t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ y1 = y;
+ SET_LOW_WORD(y1, 0);
+ p_l = (y-y1)*t1 + y*t2;
+ p_h = y1*t1;
+ z = p_l + p_h;
+ EXTRACT_WORDS(j, i, z);
+ if (j >= 0x40900000) { /* z >= 1024 */
+ if (((j-0x40900000)|i) != 0) /* if z > 1024 */
+ return s*huge*huge; /* overflow */
+ if (p_l + ovt > z - p_h)
+ return s*huge*huge; /* overflow */
+ } else if ((j&0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ // FIXME: instead of abs(j) use unsigned j
+ if (((j-0xc090cc00)|i) != 0) /* z < -1075 */
+ return s*tiny*tiny; /* underflow */
+ if (p_l <= z - p_h)
+ return s*tiny*tiny; /* underflow */
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j & 0x7fffffff;
+ k = (i>>20) - 0x3ff;
+ n = 0;
+ if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00100000>>(k+1));
+ k = ((n&0x7fffffff)>>20) - 0x3ff; /* new k for n */
+ t = 0.0;
+ SET_HIGH_WORD(t, n & ~(0x000fffff>>k));
+ n = ((n&0x000fffff)|0x00100000)>>(20-k);
+ if (j < 0)
+ n = -n;
+ p_h -= t;
+ }
+ t = p_l + p_h;
+ SET_LOW_WORD(t, 0);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2 + t*lg2_l;
+ z = u + v;
+ w = v - (z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ r = (z*t1)/(t1-2.0) - (w + z*w);
+ z = 1.0 - (r-z);
+ GET_HIGH_WORD(j, z);
+ j += n<<20;
+ if ((j>>20) <= 0) /* subnormal output */
+ z = scalbn(z,n);
+ else
+ SET_HIGH_WORD(z, j);
+ return s*z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/powf.c b/lib/mlibc/options/ansi/musl-generic-math/powf.c
new file mode 100644
index 0000000..427c896
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/powf.c
@@ -0,0 +1,259 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
+dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
+two24 = 16777216.0, /* 0x4b800000 */
+huge = 1.0e30,
+tiny = 1.0e-30,
+/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+L1 = 6.0000002384e-01, /* 0x3f19999a */
+L2 = 4.2857143283e-01, /* 0x3edb6db7 */
+L3 = 3.3333334327e-01, /* 0x3eaaaaab */
+L4 = 2.7272811532e-01, /* 0x3e8ba305 */
+L5 = 2.3066075146e-01, /* 0x3e6c3255 */
+L6 = 2.0697501302e-01, /* 0x3e53f142 */
+P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+P2 = -2.7777778450e-03, /* 0xbb360b61 */
+P3 = 6.6137559770e-05, /* 0x388ab355 */
+P4 = -1.6533901999e-06, /* 0xb5ddea0e */
+P5 = 4.1381369442e-08, /* 0x3331bb4c */
+lg2 = 6.9314718246e-01, /* 0x3f317218 */
+lg2_h = 6.93145752e-01, /* 0x3f317200 */
+lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
+ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
+cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
+cp_h = 9.6191406250e-01, /* 0x3f764000 =12b cp */
+cp_l = -1.1736857402e-04, /* 0xb8f623c6 =tail of cp_h */
+ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+
+float powf(float x, float y)
+{
+ float z,ax,z_h,z_l,p_h,p_l;
+ float y1,t1,t2,r,s,sn,t,u,v,w;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy,is;
+
+ GET_FLOAT_WORD(hx, x);
+ GET_FLOAT_WORD(hy, y);
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x**0 = 1, even if x is NaN */
+ if (iy == 0)
+ return 1.0f;
+ /* 1**y = 1, even if y is NaN */
+ if (hx == 0x3f800000)
+ return 1.0f;
+ /* NaN if either arg is NaN */
+ if (ix > 0x7f800000 || iy > 0x7f800000)
+ return x + y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if (hx < 0) {
+ if (iy >= 0x4b800000)
+ yisint = 2; /* even integer y */
+ else if (iy >= 0x3f800000) {
+ k = (iy>>23) - 0x7f; /* exponent */
+ j = iy>>(23-k);
+ if ((j<<(23-k)) == iy)
+ yisint = 2 - (j & 1);
+ }
+ }
+
+ /* special value of y */
+ if (iy == 0x7f800000) { /* y is +-inf */
+ if (ix == 0x3f800000) /* (-1)**+-inf is 1 */
+ return 1.0f;
+ else if (ix > 0x3f800000) /* (|x|>1)**+-inf = inf,0 */
+ return hy >= 0 ? y : 0.0f;
+ else /* (|x|<1)**+-inf = 0,inf */
+ return hy >= 0 ? 0.0f: -y;
+ }
+ if (iy == 0x3f800000) /* y is +-1 */
+ return hy >= 0 ? x : 1.0f/x;
+ if (hy == 0x40000000) /* y is 2 */
+ return x*x;
+ if (hy == 0x3f000000) { /* y is 0.5 */
+ if (hx >= 0) /* x >= +0 */
+ return sqrtf(x);
+ }
+
+ ax = fabsf(x);
+ /* special value of x */
+ if (ix == 0x7f800000 || ix == 0 || ix == 0x3f800000) { /* x is +-0,+-inf,+-1 */
+ z = ax;
+ if (hy < 0) /* z = (1/|x|) */
+ z = 1.0f/z;
+ if (hx < 0) {
+ if (((ix-0x3f800000)|yisint) == 0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if (yisint == 1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+
+ sn = 1.0f; /* sign of result */
+ if (hx < 0) {
+ if (yisint == 0) /* (x<0)**(non-int) is NaN */
+ return (x-x)/(x-x);
+ if (yisint == 1) /* (x<0)**(odd int) */
+ sn = -1.0f;
+ }
+
+ /* |y| is huge */
+ if (iy > 0x4d000000) { /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if (ix < 0x3f7ffff8)
+ return hy < 0 ? sn*huge*huge : sn*tiny*tiny;
+ if (ix > 0x3f800007)
+ return hy > 0 ? sn*huge*huge : sn*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax - 1; /* t has 20 trailing zeros */
+ w = (t*t)*(0.5f - t*(0.333333333333f - t*0.25f));
+ u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
+ v = t*ivln2_l - w*ivln2;
+ t1 = u + v;
+ GET_FLOAT_WORD(is, t1);
+ SET_FLOAT_WORD(t1, is & 0xfffff000);
+ t2 = v - (t1-u);
+ } else {
+ float s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ if (ix < 0x00800000) {
+ ax *= two24;
+ n -= 24;
+ GET_FLOAT_WORD(ix, ax);
+ }
+ n += ((ix)>>23) - 0x7f;
+ j = ix & 0x007fffff;
+ /* determine interval */
+ ix = j | 0x3f800000; /* normalize ix */
+ if (j <= 0x1cc471) /* |x|<sqrt(3/2) */
+ k = 0;
+ else if (j < 0x5db3d7) /* |x|<sqrt(3) */
+ k = 1;
+ else {
+ k = 0;
+ n += 1;
+ ix -= 0x00800000;
+ }
+ SET_FLOAT_WORD(ax, ix);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = 1.0f/(ax+bp[k]);
+ s = u*v;
+ s_h = s;
+ GET_FLOAT_WORD(is, s_h);
+ SET_FLOAT_WORD(s_h, is & 0xfffff000);
+ /* t_h=ax+bp[k] High */
+ is = ((ix>>1) & 0xfffff000) | 0x20000000;
+ SET_FLOAT_WORD(t_h, is + 0x00400000 + (k<<21));
+ t_l = ax - (t_h - bp[k]);
+ s_l = v*((u - s_h*t_h) - s_h*t_l);
+ /* compute log(ax) */
+ s2 = s*s;
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+ r += s_l*(s_h+s);
+ s2 = s_h*s_h;
+ t_h = 3.0f + s2 + r;
+ GET_FLOAT_WORD(is, t_h);
+ SET_FLOAT_WORD(t_h, is & 0xfffff000);
+ t_l = r - ((t_h - 3.0f) - s2);
+ /* u+v = s*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h + t_l*s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u + v;
+ GET_FLOAT_WORD(is, p_h);
+ SET_FLOAT_WORD(p_h, is & 0xfffff000);
+ p_l = v - (p_h - u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h + p_l*cp+dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (float)n;
+ t1 = (((z_h + z_l) + dp_h[k]) + t);
+ GET_FLOAT_WORD(is, t1);
+ SET_FLOAT_WORD(t1, is & 0xfffff000);
+ t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ GET_FLOAT_WORD(is, y);
+ SET_FLOAT_WORD(y1, is & 0xfffff000);
+ p_l = (y-y1)*t1 + y*t2;
+ p_h = y1*t1;
+ z = p_l + p_h;
+ GET_FLOAT_WORD(j, z);
+ if (j > 0x43000000) /* if z > 128 */
+ return sn*huge*huge; /* overflow */
+ else if (j == 0x43000000) { /* if z == 128 */
+ if (p_l + ovt > z - p_h)
+ return sn*huge*huge; /* overflow */
+ } else if ((j&0x7fffffff) > 0x43160000) /* z < -150 */ // FIXME: check should be (uint32_t)j > 0xc3160000
+ return sn*tiny*tiny; /* underflow */
+ else if (j == 0xc3160000) { /* z == -150 */
+ if (p_l <= z-p_h)
+ return sn*tiny*tiny; /* underflow */
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j & 0x7fffffff;
+ k = (i>>23) - 0x7f;
+ n = 0;
+ if (i > 0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00800000>>(k+1));
+ k = ((n&0x7fffffff)>>23) - 0x7f; /* new k for n */
+ SET_FLOAT_WORD(t, n & ~(0x007fffff>>k));
+ n = ((n&0x007fffff)|0x00800000)>>(23-k);
+ if (j < 0)
+ n = -n;
+ p_h -= t;
+ }
+ t = p_l + p_h;
+ GET_FLOAT_WORD(is, t);
+ SET_FLOAT_WORD(t, is & 0xffff8000);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2 + t*lg2_l;
+ z = u + v;
+ w = v - (z - u);
+ t = z*z;
+ t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ r = (z*t1)/(t1-2.0f) - (w+z*w);
+ z = 1.0f - (r - z);
+ GET_FLOAT_WORD(j, z);
+ j += n<<23;
+ if ((j>>23) <= 0) /* subnormal output */
+ z = scalbnf(z, n);
+ else
+ SET_FLOAT_WORD(z, j);
+ return sn*z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/powl.c b/lib/mlibc/options/ansi/musl-generic-math/powl.c
new file mode 100644
index 0000000..5b6da07
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/powl.c
@@ -0,0 +1,522 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/* powl.c
+ *
+ * Power function, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, z, powl();
+ *
+ * z = powl( x, y );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Computes x raised to the yth power. Analytically,
+ *
+ * x**y = exp( y log(x) ).
+ *
+ * Following Cody and Waite, this program uses a lookup table
+ * of 2**-i/32 and pseudo extended precision arithmetic to
+ * obtain several extra bits of accuracy in both the logarithm
+ * and the exponential.
+ *
+ *
+ * ACCURACY:
+ *
+ * The relative error of pow(x,y) can be estimated
+ * by y dl ln(2), where dl is the absolute error of
+ * the internally computed base 2 logarithm. At the ends
+ * of the approximation interval the logarithm equal 1/32
+ * and its relative error is about 1 lsb = 1.1e-19. Hence
+ * the predicted relative error in the result is 2.3e-21 y .
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ *
+ * IEEE +-1000 40000 2.8e-18 3.7e-19
+ * .001 < x < 1000, with log(x) uniformly distributed.
+ * -1000 < y < 1000, y uniformly distributed.
+ *
+ * IEEE 0,8700 60000 6.5e-18 1.0e-18
+ * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
+ *
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * pow overflow x**y > MAXNUM INFINITY
+ * pow underflow x**y < 1/MAXNUM 0.0
+ * pow domain x<0 and y noninteger 0.0
+ *
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double powl(long double x, long double y)
+{
+ return pow(x, y);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+
+/* Table size */
+#define NXT 32
+
+/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
+ * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
+ */
+static const long double P[] = {
+ 8.3319510773868690346226E-4L,
+ 4.9000050881978028599627E-1L,
+ 1.7500123722550302671919E0L,
+ 1.4000100839971580279335E0L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0L,*/
+ 5.2500282295834889175431E0L,
+ 8.4000598057587009834666E0L,
+ 4.2000302519914740834728E0L,
+};
+/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
+ * If i is even, A[i] + B[i/2] gives additional accuracy.
+ */
+static const long double A[33] = {
+ 1.0000000000000000000000E0L,
+ 9.7857206208770013448287E-1L,
+ 9.5760328069857364691013E-1L,
+ 9.3708381705514995065011E-1L,
+ 9.1700404320467123175367E-1L,
+ 8.9735453750155359320742E-1L,
+ 8.7812608018664974155474E-1L,
+ 8.5930964906123895780165E-1L,
+ 8.4089641525371454301892E-1L,
+ 8.2287773907698242225554E-1L,
+ 8.0524516597462715409607E-1L,
+ 7.8799042255394324325455E-1L,
+ 7.7110541270397041179298E-1L,
+ 7.5458221379671136985669E-1L,
+ 7.3841307296974965571198E-1L,
+ 7.2259040348852331001267E-1L,
+ 7.0710678118654752438189E-1L,
+ 6.9195494098191597746178E-1L,
+ 6.7712777346844636413344E-1L,
+ 6.6261832157987064729696E-1L,
+ 6.4841977732550483296079E-1L,
+ 6.3452547859586661129850E-1L,
+ 6.2092890603674202431705E-1L,
+ 6.0762367999023443907803E-1L,
+ 5.9460355750136053334378E-1L,
+ 5.8186242938878875689693E-1L,
+ 5.6939431737834582684856E-1L,
+ 5.5719337129794626814472E-1L,
+ 5.4525386633262882960438E-1L,
+ 5.3357020033841180906486E-1L,
+ 5.2213689121370692017331E-1L,
+ 5.1094857432705833910408E-1L,
+ 5.0000000000000000000000E-1L,
+};
+static const long double B[17] = {
+ 0.0000000000000000000000E0L,
+ 2.6176170809902549338711E-20L,
+-1.0126791927256478897086E-20L,
+ 1.3438228172316276937655E-21L,
+ 1.2207982955417546912101E-20L,
+-6.3084814358060867200133E-21L,
+ 1.3164426894366316434230E-20L,
+-1.8527916071632873716786E-20L,
+ 1.8950325588932570796551E-20L,
+ 1.5564775779538780478155E-20L,
+ 6.0859793637556860974380E-21L,
+-2.0208749253662532228949E-20L,
+ 1.4966292219224761844552E-20L,
+ 3.3540909728056476875639E-21L,
+-8.6987564101742849540743E-22L,
+-1.2327176863327626135542E-20L,
+ 0.0000000000000000000000E0L,
+};
+
+/* 2^x = 1 + x P(x),
+ * on the interval -1/32 <= x <= 0
+ */
+static const long double R[] = {
+ 1.5089970579127659901157E-5L,
+ 1.5402715328927013076125E-4L,
+ 1.3333556028915671091390E-3L,
+ 9.6181291046036762031786E-3L,
+ 5.5504108664798463044015E-2L,
+ 2.4022650695910062854352E-1L,
+ 6.9314718055994530931447E-1L,
+};
+
+#define MEXP (NXT*16384.0L)
+/* The following if denormal numbers are supported, else -MEXP: */
+#define MNEXP (-NXT*(16384.0L+64.0L))
+/* log2(e) - 1 */
+#define LOG2EA 0.44269504088896340735992L
+
+#define F W
+#define Fa Wa
+#define Fb Wb
+#define G W
+#define Ga Wa
+#define Gb u
+#define H W
+#define Ha Wb
+#define Hb Wb
+
+static const long double MAXLOGL = 1.1356523406294143949492E4L;
+static const long double MINLOGL = -1.13994985314888605586758E4L;
+static const long double LOGE2L = 6.9314718055994530941723E-1L;
+static const long double huge = 0x1p10000L;
+/* XXX Prevent gcc from erroneously constant folding this. */
+static const volatile long double twom10000 = 0x1p-10000L;
+
+static long double reducl(long double);
+static long double powil(long double, int);
+
+long double powl(long double x, long double y)
+{
+ /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
+ int i, nflg, iyflg, yoddint;
+ long e;
+ volatile long double z=0;
+ long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
+
+ /* make sure no invalid exception is raised by nan comparision */
+ if (isnan(x)) {
+ if (!isnan(y) && y == 0.0)
+ return 1.0;
+ return x;
+ }
+ if (isnan(y)) {
+ if (x == 1.0)
+ return 1.0;
+ return y;
+ }
+ if (x == 1.0)
+ return 1.0; /* 1**y = 1, even if y is nan */
+ if (x == -1.0 && !isfinite(y))
+ return 1.0; /* -1**inf = 1 */
+ if (y == 0.0)
+ return 1.0; /* x**0 = 1, even if x is nan */
+ if (y == 1.0)
+ return x;
+ if (y >= LDBL_MAX) {
+ if (x > 1.0 || x < -1.0)
+ return INFINITY;
+ if (x != 0.0)
+ return 0.0;
+ }
+ if (y <= -LDBL_MAX) {
+ if (x > 1.0 || x < -1.0)
+ return 0.0;
+ if (x != 0.0 || y == -INFINITY)
+ return INFINITY;
+ }
+ if (x >= LDBL_MAX) {
+ if (y > 0.0)
+ return INFINITY;
+ return 0.0;
+ }
+
+ w = floorl(y);
+
+ /* Set iyflg to 1 if y is an integer. */
+ iyflg = 0;
+ if (w == y)
+ iyflg = 1;
+
+ /* Test for odd integer y. */
+ yoddint = 0;
+ if (iyflg) {
+ ya = fabsl(y);
+ ya = floorl(0.5 * ya);
+ yb = 0.5 * fabsl(w);
+ if( ya != yb )
+ yoddint = 1;
+ }
+
+ if (x <= -LDBL_MAX) {
+ if (y > 0.0) {
+ if (yoddint)
+ return -INFINITY;
+ return INFINITY;
+ }
+ if (y < 0.0) {
+ if (yoddint)
+ return -0.0;
+ return 0.0;
+ }
+ }
+ nflg = 0; /* (x<0)**(odd int) */
+ if (x <= 0.0) {
+ if (x == 0.0) {
+ if (y < 0.0) {
+ if (signbit(x) && yoddint)
+ /* (-0.0)**(-odd int) = -inf, divbyzero */
+ return -1.0/0.0;
+ /* (+-0.0)**(negative) = inf, divbyzero */
+ return 1.0/0.0;
+ }
+ if (signbit(x) && yoddint)
+ return -0.0;
+ return 0.0;
+ }
+ if (iyflg == 0)
+ return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
+ /* (x<0)**(integer) */
+ if (yoddint)
+ nflg = 1; /* negate result */
+ x = -x;
+ }
+ /* (+integer)**(integer) */
+ if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
+ w = powil(x, (int)y);
+ return nflg ? -w : w;
+ }
+
+ /* separate significand from exponent */
+ x = frexpl(x, &i);
+ e = i;
+
+ /* find significand in antilog table A[] */
+ i = 1;
+ if (x <= A[17])
+ i = 17;
+ if (x <= A[i+8])
+ i += 8;
+ if (x <= A[i+4])
+ i += 4;
+ if (x <= A[i+2])
+ i += 2;
+ if (x >= A[1])
+ i = -1;
+ i += 1;
+
+ /* Find (x - A[i])/A[i]
+ * in order to compute log(x/A[i]):
+ *
+ * log(x) = log( a x/a ) = log(a) + log(x/a)
+ *
+ * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
+ */
+ x -= A[i];
+ x -= B[i/2];
+ x /= A[i];
+
+ /* rational approximation for log(1+v):
+ *
+ * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
+ */
+ z = x*x;
+ w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
+ w = w - 0.5*z;
+
+ /* Convert to base 2 logarithm:
+ * multiply by log2(e) = 1 + LOG2EA
+ */
+ z = LOG2EA * w;
+ z += w;
+ z += LOG2EA * x;
+ z += x;
+
+ /* Compute exponent term of the base 2 logarithm. */
+ w = -i;
+ w /= NXT;
+ w += e;
+ /* Now base 2 log of x is w + z. */
+
+ /* Multiply base 2 log by y, in extended precision. */
+
+ /* separate y into large part ya
+ * and small part yb less than 1/NXT
+ */
+ ya = reducl(y);
+ yb = y - ya;
+
+ /* (w+z)(ya+yb)
+ * = w*ya + w*yb + z*y
+ */
+ F = z * y + w * yb;
+ Fa = reducl(F);
+ Fb = F - Fa;
+
+ G = Fa + w * ya;
+ Ga = reducl(G);
+ Gb = G - Ga;
+
+ H = Fb + Gb;
+ Ha = reducl(H);
+ w = (Ga + Ha) * NXT;
+
+ /* Test the power of 2 for overflow */
+ if (w > MEXP)
+ return huge * huge; /* overflow */
+ if (w < MNEXP)
+ return twom10000 * twom10000; /* underflow */
+
+ e = w;
+ Hb = H - Ha;
+
+ if (Hb > 0.0) {
+ e += 1;
+ Hb -= 1.0/NXT; /*0.0625L;*/
+ }
+
+ /* Now the product y * log2(x) = Hb + e/NXT.
+ *
+ * Compute base 2 exponential of Hb,
+ * where -0.0625 <= Hb <= 0.
+ */
+ z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
+
+ /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
+ * Find lookup table entry for the fractional power of 2.
+ */
+ if (e < 0)
+ i = 0;
+ else
+ i = 1;
+ i = e/NXT + i;
+ e = NXT*i - e;
+ w = A[e];
+ z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
+ z = z + w;
+ z = scalbnl(z, i); /* multiply by integer power of 2 */
+
+ if (nflg)
+ z = -z;
+ return z;
+}
+
+
+/* Find a multiple of 1/NXT that is within 1/NXT of x. */
+static long double reducl(long double x)
+{
+ long double t;
+
+ t = x * NXT;
+ t = floorl(t);
+ t = t / NXT;
+ return t;
+}
+
+/*
+ * Positive real raised to integer power, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, powil();
+ * int n;
+ *
+ * y = powil( x, n );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns argument x>0 raised to the nth power.
+ * The routine efficiently decomposes n as a sum of powers of
+ * two. The desired power is a product of two-to-the-kth
+ * powers of x. Thus to compute the 32767 power of x requires
+ * 28 multiplications instead of 32767 multiplications.
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic x domain n domain # trials peak rms
+ * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
+ * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
+ * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
+ *
+ * Returns MAXNUM on overflow, zero on underflow.
+ */
+
+static long double powil(long double x, int nn)
+{
+ long double ww, y;
+ long double s;
+ int n, e, sign, lx;
+
+ if (nn == 0)
+ return 1.0;
+
+ if (nn < 0) {
+ sign = -1;
+ n = -nn;
+ } else {
+ sign = 1;
+ n = nn;
+ }
+
+ /* Overflow detection */
+
+ /* Calculate approximate logarithm of answer */
+ s = x;
+ s = frexpl( s, &lx);
+ e = (lx - 1)*n;
+ if ((e == 0) || (e > 64) || (e < -64)) {
+ s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
+ s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
+ } else {
+ s = LOGE2L * e;
+ }
+
+ if (s > MAXLOGL)
+ return huge * huge; /* overflow */
+
+ if (s < MINLOGL)
+ return twom10000 * twom10000; /* underflow */
+ /* Handle tiny denormal answer, but with less accuracy
+ * since roundoff error in 1.0/x will be amplified.
+ * The precise demarcation should be the gradual underflow threshold.
+ */
+ if (s < -MAXLOGL+2.0) {
+ x = 1.0/x;
+ sign = -sign;
+ }
+
+ /* First bit of the power */
+ if (n & 1)
+ y = x;
+ else
+ y = 1.0;
+
+ ww = x;
+ n >>= 1;
+ while (n) {
+ ww = ww * ww; /* arg to the 2-to-the-kth power */
+ if (n & 1) /* if that bit is set, then include in product */
+ y *= ww;
+ n >>= 1;
+ }
+
+ if (sign < 0)
+ y = 1.0/y;
+ return y;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double powl(long double x, long double y)
+{
+ return pow(x, y);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remainder.c b/lib/mlibc/options/ansi/musl-generic-math/remainder.c
new file mode 100644
index 0000000..e4abcd7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remainder.c
@@ -0,0 +1,11 @@
+#include <math.h>
+#include "weak_alias.h"
+//#include "libc.h"
+
+double remainder(double x, double y)
+{
+ int q;
+ return remquo(x, y, &q);
+}
+
+weak_alias(remainder, drem);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remainderf.c b/lib/mlibc/options/ansi/musl-generic-math/remainderf.c
new file mode 100644
index 0000000..e1fcdaa
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remainderf.c
@@ -0,0 +1,11 @@
+#include <math.h>
+#include "weak_alias.h"
+//#include "libc.h"
+
+float remainderf(float x, float y)
+{
+ int q;
+ return remquof(x, y, &q);
+}
+
+weak_alias(remainderf, dremf);
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remainderl.c b/lib/mlibc/options/ansi/musl-generic-math/remainderl.c
new file mode 100644
index 0000000..2a13c1d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remainderl.c
@@ -0,0 +1,15 @@
+#include <math.h>
+#include <float.h>
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double remainderl(long double x, long double y)
+{
+ return remainder(x, y);
+}
+#else
+long double remainderl(long double x, long double y)
+{
+ int q;
+ return remquol(x, y, &q);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remquo.c b/lib/mlibc/options/ansi/musl-generic-math/remquo.c
new file mode 100644
index 0000000..59d5ad5
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remquo.c
@@ -0,0 +1,82 @@
+#include <math.h>
+#include <stdint.h>
+
+double remquo(double x, double y, int *quo)
+{
+ union {double f; uint64_t i;} ux = {x}, uy = {y};
+ int ex = ux.i>>52 & 0x7ff;
+ int ey = uy.i>>52 & 0x7ff;
+ int sx = ux.i>>63;
+ int sy = uy.i>>63;
+ uint32_t q;
+ uint64_t i;
+ uint64_t uxi = ux.i;
+
+ *quo = 0;
+ if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
+ return (x*y)/(x*y);
+ if (ux.i<<1 == 0)
+ return x;
+
+ /* normalize x and y */
+ if (!ex) {
+ for (i = uxi<<12; i>>63 == 0; ex--, i <<= 1);
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= -1ULL >> 12;
+ uxi |= 1ULL << 52;
+ }
+ if (!ey) {
+ for (i = uy.i<<12; i>>63 == 0; ey--, i <<= 1);
+ uy.i <<= -ey + 1;
+ } else {
+ uy.i &= -1ULL >> 12;
+ uy.i |= 1ULL << 52;
+ }
+
+ q = 0;
+ if (ex < ey) {
+ if (ex+1 == ey)
+ goto end;
+ return x;
+ }
+
+ /* x mod y */
+ for (; ex > ey; ex--) {
+ i = uxi - uy.i;
+ if (i >> 63 == 0) {
+ uxi = i;
+ q++;
+ }
+ uxi <<= 1;
+ q <<= 1;
+ }
+ i = uxi - uy.i;
+ if (i >> 63 == 0) {
+ uxi = i;
+ q++;
+ }
+ if (uxi == 0)
+ ex = -60;
+ else
+ for (; uxi>>52 == 0; uxi <<= 1, ex--);
+end:
+ /* scale result and decide between |x| and |x|-|y| */
+ if (ex > 0) {
+ uxi -= 1ULL << 52;
+ uxi |= (uint64_t)ex << 52;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ ux.i = uxi;
+ x = ux.f;
+ if (sy)
+ y = -y;
+ if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
+ x -= y;
+ q++;
+ }
+ q &= 0x7fffffff;
+ *quo = sx^sy ? -(int)q : (int)q;
+ return sx ? -x : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remquof.c b/lib/mlibc/options/ansi/musl-generic-math/remquof.c
new file mode 100644
index 0000000..2f41ff7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remquof.c
@@ -0,0 +1,82 @@
+#include <math.h>
+#include <stdint.h>
+
+float remquof(float x, float y, int *quo)
+{
+ union {float f; uint32_t i;} ux = {x}, uy = {y};
+ int ex = ux.i>>23 & 0xff;
+ int ey = uy.i>>23 & 0xff;
+ int sx = ux.i>>31;
+ int sy = uy.i>>31;
+ uint32_t q;
+ uint32_t i;
+ uint32_t uxi = ux.i;
+
+ *quo = 0;
+ if (uy.i<<1 == 0 || isnan(y) || ex == 0xff)
+ return (x*y)/(x*y);
+ if (ux.i<<1 == 0)
+ return x;
+
+ /* normalize x and y */
+ if (!ex) {
+ for (i = uxi<<9; i>>31 == 0; ex--, i <<= 1);
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= -1U >> 9;
+ uxi |= 1U << 23;
+ }
+ if (!ey) {
+ for (i = uy.i<<9; i>>31 == 0; ey--, i <<= 1);
+ uy.i <<= -ey + 1;
+ } else {
+ uy.i &= -1U >> 9;
+ uy.i |= 1U << 23;
+ }
+
+ q = 0;
+ if (ex < ey) {
+ if (ex+1 == ey)
+ goto end;
+ return x;
+ }
+
+ /* x mod y */
+ for (; ex > ey; ex--) {
+ i = uxi - uy.i;
+ if (i >> 31 == 0) {
+ uxi = i;
+ q++;
+ }
+ uxi <<= 1;
+ q <<= 1;
+ }
+ i = uxi - uy.i;
+ if (i >> 31 == 0) {
+ uxi = i;
+ q++;
+ }
+ if (uxi == 0)
+ ex = -30;
+ else
+ for (; uxi>>23 == 0; uxi <<= 1, ex--);
+end:
+ /* scale result and decide between |x| and |x|-|y| */
+ if (ex > 0) {
+ uxi -= 1U << 23;
+ uxi |= (uint32_t)ex << 23;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ ux.i = uxi;
+ x = ux.f;
+ if (sy)
+ y = -y;
+ if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
+ x -= y;
+ q++;
+ }
+ q &= 0x7fffffff;
+ *quo = sx^sy ? -(int)q : (int)q;
+ return sx ? -x : x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/remquol.c b/lib/mlibc/options/ansi/musl-generic-math/remquol.c
new file mode 100644
index 0000000..9b065c0
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/remquol.c
@@ -0,0 +1,124 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double remquol(long double x, long double y, int *quo)
+{
+ return remquo(x, y, quo);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double remquol(long double x, long double y, int *quo)
+{
+ union ldshape ux = {x}, uy = {y};
+ int ex = ux.i.se & 0x7fff;
+ int ey = uy.i.se & 0x7fff;
+ int sx = ux.i.se >> 15;
+ int sy = uy.i.se >> 15;
+ uint32_t q;
+
+ *quo = 0;
+ if (y == 0 || isnan(y) || ex == 0x7fff)
+ return (x*y)/(x*y);
+ if (x == 0)
+ return x;
+
+ /* normalize x and y */
+ if (!ex) {
+ ux.i.se = ex;
+ ux.f *= 0x1p120f;
+ ex = ux.i.se - 120;
+ }
+ if (!ey) {
+ uy.i.se = ey;
+ uy.f *= 0x1p120f;
+ ey = uy.i.se - 120;
+ }
+
+ q = 0;
+ if (ex >= ey) {
+ /* x mod y */
+#if LDBL_MANT_DIG == 64
+ uint64_t i, mx, my;
+ mx = ux.i.m;
+ my = uy.i.m;
+ for (; ex > ey; ex--) {
+ i = mx - my;
+ if (mx >= my) {
+ mx = 2*i;
+ q++;
+ q <<= 1;
+ } else if (2*mx < mx) {
+ mx = 2*mx - my;
+ q <<= 1;
+ q++;
+ } else {
+ mx = 2*mx;
+ q <<= 1;
+ }
+ }
+ i = mx - my;
+ if (mx >= my) {
+ mx = i;
+ q++;
+ }
+ if (mx == 0)
+ ex = -120;
+ else
+ for (; mx >> 63 == 0; mx *= 2, ex--);
+ ux.i.m = mx;
+#elif LDBL_MANT_DIG == 113
+ uint64_t hi, lo, xhi, xlo, yhi, ylo;
+ xhi = (ux.i2.hi & -1ULL>>16) | 1ULL<<48;
+ yhi = (uy.i2.hi & -1ULL>>16) | 1ULL<<48;
+ xlo = ux.i2.lo;
+ ylo = ux.i2.lo;
+ for (; ex > ey; ex--) {
+ hi = xhi - yhi;
+ lo = xlo - ylo;
+ if (xlo < ylo)
+ hi -= 1;
+ if (hi >> 63 == 0) {
+ xhi = 2*hi + (lo>>63);
+ xlo = 2*lo;
+ q++;
+ } else {
+ xhi = 2*xhi + (xlo>>63);
+ xlo = 2*xlo;
+ }
+ q <<= 1;
+ }
+ hi = xhi - yhi;
+ lo = xlo - ylo;
+ if (xlo < ylo)
+ hi -= 1;
+ if (hi >> 63 == 0) {
+ xhi = hi;
+ xlo = lo;
+ q++;
+ }
+ if ((xhi|xlo) == 0)
+ ex = -120;
+ else
+ for (; xhi >> 48 == 0; xhi = 2*xhi + (xlo>>63), xlo = 2*xlo, ex--);
+ ux.i2.hi = xhi;
+ ux.i2.lo = xlo;
+#endif
+ }
+
+ /* scale result and decide between |x| and |x|-|y| */
+ if (ex <= 0) {
+ ux.i.se = ex + 120;
+ ux.f *= 0x1p-120f;
+ } else
+ ux.i.se = ex;
+ x = ux.f;
+ if (sy)
+ y = -y;
+ if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
+ x -= y;
+ q++;
+ }
+ q &= 0x7fffffff;
+ *quo = sx^sy ? -(int)q : (int)q;
+ return sx ? -x : x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/rint.c b/lib/mlibc/options/ansi/musl-generic-math/rint.c
new file mode 100644
index 0000000..fbba390
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/rint.c
@@ -0,0 +1,28 @@
+#include <float.h>
+#include <math.h>
+#include <stdint.h>
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const double_t toint = 1/EPS;
+
+double rint(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = u.i>>52 & 0x7ff;
+ int s = u.i>>63;
+ double_t y;
+
+ if (e >= 0x3ff+52)
+ return x;
+ if (s)
+ y = x - toint + toint;
+ else
+ y = x + toint - toint;
+ if (y == 0)
+ return s ? -0.0 : 0;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/rintf.c b/lib/mlibc/options/ansi/musl-generic-math/rintf.c
new file mode 100644
index 0000000..9047688
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/rintf.c
@@ -0,0 +1,30 @@
+#include <float.h>
+#include <math.h>
+#include <stdint.h>
+
+#if FLT_EVAL_METHOD==0
+#define EPS FLT_EPSILON
+#elif FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const float_t toint = 1/EPS;
+
+float rintf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = u.i>>23 & 0xff;
+ int s = u.i>>31;
+ float_t y;
+
+ if (e >= 0x7f+23)
+ return x;
+ if (s)
+ y = x - toint + toint;
+ else
+ y = x + toint - toint;
+ if (y == 0)
+ return s ? -0.0f : 0.0f;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/rintl.c b/lib/mlibc/options/ansi/musl-generic-math/rintl.c
new file mode 100644
index 0000000..374327d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/rintl.c
@@ -0,0 +1,29 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double rintl(long double x)
+{
+ return rint(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double rintl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ int s = u.i.se >> 15;
+ long double y;
+
+ if (e >= 0x3fff+LDBL_MANT_DIG-1)
+ return x;
+ if (s)
+ y = x - toint + toint;
+ else
+ y = x + toint - toint;
+ if (y == 0)
+ return 0*x;
+ return y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/round.c b/lib/mlibc/options/ansi/musl-generic-math/round.c
new file mode 100644
index 0000000..130d58d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/round.c
@@ -0,0 +1,35 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const double_t toint = 1/EPS;
+
+double round(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = u.i >> 52 & 0x7ff;
+ double_t y;
+
+ if (e >= 0x3ff+52)
+ return x;
+ if (u.i >> 63)
+ x = -x;
+ if (e < 0x3ff-1) {
+ /* raise inexact if x!=0 */
+ FORCE_EVAL(x + toint);
+ return 0*u.f;
+ }
+ y = x + toint - toint - x;
+ if (y > 0.5)
+ y = y + x - 1;
+ else if (y <= -0.5)
+ y = y + x + 1;
+ else
+ y = y + x;
+ if (u.i >> 63)
+ y = -y;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/roundf.c b/lib/mlibc/options/ansi/musl-generic-math/roundf.c
new file mode 100644
index 0000000..e8210af
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/roundf.c
@@ -0,0 +1,36 @@
+#include "libm.h"
+
+#if FLT_EVAL_METHOD==0
+#define EPS FLT_EPSILON
+#elif FLT_EVAL_METHOD==1
+#define EPS DBL_EPSILON
+#elif FLT_EVAL_METHOD==2
+#define EPS LDBL_EPSILON
+#endif
+static const float_t toint = 1/EPS;
+
+float roundf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = u.i >> 23 & 0xff;
+ float_t y;
+
+ if (e >= 0x7f+23)
+ return x;
+ if (u.i >> 31)
+ x = -x;
+ if (e < 0x7f-1) {
+ FORCE_EVAL(x + toint);
+ return 0*u.f;
+ }
+ y = x + toint - toint - x;
+ if (y > 0.5f)
+ y = y + x - 1;
+ else if (y <= -0.5f)
+ y = y + x + 1;
+ else
+ y = y + x;
+ if (u.i >> 31)
+ y = -y;
+ return y;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/roundl.c b/lib/mlibc/options/ansi/musl-generic-math/roundl.c
new file mode 100644
index 0000000..f4ff682
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/roundl.c
@@ -0,0 +1,37 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double roundl(long double x)
+{
+ return round(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double roundl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ long double y;
+
+ if (e >= 0x3fff+LDBL_MANT_DIG-1)
+ return x;
+ if (u.i.se >> 15)
+ x = -x;
+ if (e < 0x3fff-1) {
+ FORCE_EVAL(x + toint);
+ return 0*u.f;
+ }
+ y = x + toint - toint - x;
+ if (y > 0.5)
+ y = y + x - 1;
+ else if (y <= -0.5)
+ y = y + x + 1;
+ else
+ y = y + x;
+ if (u.i.se >> 15)
+ y = -y;
+ return y;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalb.c b/lib/mlibc/options/ansi/musl-generic-math/scalb.c
new file mode 100644
index 0000000..efe69e6
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalb.c
@@ -0,0 +1,35 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_scalb.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * scalb(x, fn) is provide for
+ * passing various standard test suite. One
+ * should use scalbn() instead.
+ */
+
+#define _GNU_SOURCE
+#include <math.h>
+
+double scalb(double x, double fn)
+{
+ if (isnan(x) || isnan(fn))
+ return x*fn;
+ if (!isfinite(fn)) {
+ if (fn > 0.0)
+ return x*fn;
+ else
+ return x/(-fn);
+ }
+ if (rint(fn) != fn) return (fn-fn)/(fn-fn);
+ if ( fn > 65000.0) return scalbn(x, 65000);
+ if (-fn > 65000.0) return scalbn(x,-65000);
+ return scalbn(x,(int)fn);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalbf.c b/lib/mlibc/options/ansi/musl-generic-math/scalbf.c
new file mode 100644
index 0000000..f44ed5b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalbf.c
@@ -0,0 +1,32 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_scalbf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include <math.h>
+
+float scalbf(float x, float fn)
+{
+ if (isnan(x) || isnan(fn)) return x*fn;
+ if (!isfinite(fn)) {
+ if (fn > 0.0f)
+ return x*fn;
+ else
+ return x/(-fn);
+ }
+ if (rintf(fn) != fn) return (fn-fn)/(fn-fn);
+ if ( fn > 65000.0f) return scalbnf(x, 65000);
+ if (-fn > 65000.0f) return scalbnf(x,-65000);
+ return scalbnf(x,(int)fn);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalbln.c b/lib/mlibc/options/ansi/musl-generic-math/scalbln.c
new file mode 100644
index 0000000..4fb3d06
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalbln.c
@@ -0,0 +1,12 @@
+#include <limits.h>
+#include <math.h>
+#include "libm.h"
+
+double scalbln(double x, long n)
+{
+ if (n > INT_MAX)
+ n = INT_MAX;
+ else if (n < INT_MIN)
+ n = INT_MIN;
+ return scalbn(x, n);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalblnf.c b/lib/mlibc/options/ansi/musl-generic-math/scalblnf.c
new file mode 100644
index 0000000..b6bdeed
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalblnf.c
@@ -0,0 +1,12 @@
+#include <limits.h>
+#include <math.h>
+#include "libm.h"
+
+float scalblnf(float x, long n)
+{
+ if (n > INT_MAX)
+ n = INT_MAX;
+ else if (n < INT_MIN)
+ n = INT_MIN;
+ return scalbnf(x, n);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalblnl.c b/lib/mlibc/options/ansi/musl-generic-math/scalblnl.c
new file mode 100644
index 0000000..b1a0f7f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalblnl.c
@@ -0,0 +1,20 @@
+#include <limits.h>
+#include <math.h>
+#include <float.h>
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double scalblnl(long double x, long n)
+{
+ return scalbln(x, n);
+}
+#else
+long double scalblnl(long double x, long n)
+{
+ if (n > INT_MAX)
+ n = INT_MAX;
+ else if (n < INT_MIN)
+ n = INT_MIN;
+ return scalbnl(x, n);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalbn.c b/lib/mlibc/options/ansi/musl-generic-math/scalbn.c
new file mode 100644
index 0000000..182f561
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalbn.c
@@ -0,0 +1,33 @@
+#include <math.h>
+#include <stdint.h>
+
+double scalbn(double x, int n)
+{
+ union {double f; uint64_t i;} u;
+ double_t y = x;
+
+ if (n > 1023) {
+ y *= 0x1p1023;
+ n -= 1023;
+ if (n > 1023) {
+ y *= 0x1p1023;
+ n -= 1023;
+ if (n > 1023)
+ n = 1023;
+ }
+ } else if (n < -1022) {
+ /* make sure final n < -53 to avoid double
+ rounding in the subnormal range */
+ y *= 0x1p-1022 * 0x1p53;
+ n += 1022 - 53;
+ if (n < -1022) {
+ y *= 0x1p-1022 * 0x1p53;
+ n += 1022 - 53;
+ if (n < -1022)
+ n = -1022;
+ }
+ }
+ u.i = (uint64_t)(0x3ff+n)<<52;
+ x = y * u.f;
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalbnf.c b/lib/mlibc/options/ansi/musl-generic-math/scalbnf.c
new file mode 100644
index 0000000..a5ad208
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalbnf.c
@@ -0,0 +1,31 @@
+#include <math.h>
+#include <stdint.h>
+
+float scalbnf(float x, int n)
+{
+ union {float f; uint32_t i;} u;
+ float_t y = x;
+
+ if (n > 127) {
+ y *= 0x1p127f;
+ n -= 127;
+ if (n > 127) {
+ y *= 0x1p127f;
+ n -= 127;
+ if (n > 127)
+ n = 127;
+ }
+ } else if (n < -126) {
+ y *= 0x1p-126f * 0x1p24f;
+ n += 126 - 24;
+ if (n < -126) {
+ y *= 0x1p-126f * 0x1p24f;
+ n += 126 - 24;
+ if (n < -126)
+ n = -126;
+ }
+ }
+ u.i = (uint32_t)(0x7f+n)<<23;
+ x = y * u.f;
+ return x;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/scalbnl.c b/lib/mlibc/options/ansi/musl-generic-math/scalbnl.c
new file mode 100644
index 0000000..db44dab
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/scalbnl.c
@@ -0,0 +1,36 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double scalbnl(long double x, int n)
+{
+ return scalbn(x, n);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double scalbnl(long double x, int n)
+{
+ union ldshape u;
+
+ if (n > 16383) {
+ x *= 0x1p16383L;
+ n -= 16383;
+ if (n > 16383) {
+ x *= 0x1p16383L;
+ n -= 16383;
+ if (n > 16383)
+ n = 16383;
+ }
+ } else if (n < -16382) {
+ x *= 0x1p-16382L * 0x1p113L;
+ n += 16382 - 113;
+ if (n < -16382) {
+ x *= 0x1p-16382L * 0x1p113L;
+ n += 16382 - 113;
+ if (n < -16382)
+ n = -16382;
+ }
+ }
+ u.f = 1.0;
+ u.i.se = 0x3fff + n;
+ return x * u.f;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/signgam.c b/lib/mlibc/options/ansi/musl-generic-math/signgam.c
new file mode 100644
index 0000000..3a5b9f7
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/signgam.c
@@ -0,0 +1,5 @@
+#include <math.h>
+#include "weak_alias.h"
+//#include "libc.h"
+
+int signgam = 0;
diff --git a/lib/mlibc/options/ansi/musl-generic-math/significand.c b/lib/mlibc/options/ansi/musl-generic-math/significand.c
new file mode 100644
index 0000000..40d9aa9
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/significand.c
@@ -0,0 +1,7 @@
+#define _GNU_SOURCE
+#include <math.h>
+
+double significand(double x)
+{
+ return scalbn(x, -ilogb(x));
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/significandf.c b/lib/mlibc/options/ansi/musl-generic-math/significandf.c
new file mode 100644
index 0000000..8a697e1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/significandf.c
@@ -0,0 +1,7 @@
+#define _GNU_SOURCE
+#include <math.h>
+
+float significandf(float x)
+{
+ return scalbnf(x, -ilogbf(x));
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sin.c b/lib/mlibc/options/ansi/musl-generic-math/sin.c
new file mode 100644
index 0000000..055e215
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sin.c
@@ -0,0 +1,78 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ * __sin ... sine function on [-pi/4,pi/4]
+ * __cos ... cose function on [-pi/4,pi/4]
+ * __rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "libm.h"
+
+double sin(double x)
+{
+ double y[2];
+ uint32_t ix;
+ unsigned n;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if (ix <= 0x3fe921fb) {
+ if (ix < 0x3e500000) { /* |x| < 2**-26 */
+ /* raise inexact if x != 0 and underflow if subnormal*/
+ FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
+ return x;
+ }
+ return __sin(x, 0.0, 0);
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if (ix >= 0x7ff00000)
+ return x - x;
+
+ /* argument reduction needed */
+ n = __rem_pio2(x, y);
+ switch (n&3) {
+ case 0: return __sin(y[0], y[1], 1);
+ case 1: return __cos(y[0], y[1]);
+ case 2: return -__sin(y[0], y[1], 1);
+ default:
+ return -__cos(y[0], y[1]);
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sincos.c b/lib/mlibc/options/ansi/musl-generic-math/sincos.c
new file mode 100644
index 0000000..35b2d92
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sincos.c
@@ -0,0 +1,69 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+void sincos(double x, double *sin, double *cos)
+{
+ double y[2], s, c;
+ uint32_t ix;
+ unsigned n;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if (ix <= 0x3fe921fb) {
+ /* if |x| < 2**-27 * sqrt(2) */
+ if (ix < 0x3e46a09e) {
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
+ *sin = x;
+ *cos = 1.0;
+ return;
+ }
+ *sin = __sin(x, 0.0, 0);
+ *cos = __cos(x, 0.0);
+ return;
+ }
+
+ /* sincos(Inf or NaN) is NaN */
+ if (ix >= 0x7ff00000) {
+ *sin = *cos = x - x;
+ return;
+ }
+
+ /* argument reduction needed */
+ n = __rem_pio2(x, y);
+ s = __sin(y[0], y[1], 1);
+ c = __cos(y[0], y[1]);
+ switch (n&3) {
+ case 0:
+ *sin = s;
+ *cos = c;
+ break;
+ case 1:
+ *sin = c;
+ *cos = -s;
+ break;
+ case 2:
+ *sin = -s;
+ *cos = -c;
+ break;
+ case 3:
+ default:
+ *sin = -c;
+ *cos = s;
+ break;
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sincosf.c b/lib/mlibc/options/ansi/musl-generic-math/sincosf.c
new file mode 100644
index 0000000..f8ca723
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sincosf.c
@@ -0,0 +1,117 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+/* Small multiples of pi/2 rounded to double precision. */
+static const double
+s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
+s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
+s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+
+void sincosf(float x, float *sin, float *cos)
+{
+ double y;
+ float_t s, c;
+ uint32_t ix;
+ unsigned n, sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix >> 31;
+ ix &= 0x7fffffff;
+
+ /* |x| ~<= pi/4 */
+ if (ix <= 0x3f490fda) {
+ /* |x| < 2**-12 */
+ if (ix < 0x39800000) {
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
+ *sin = x;
+ *cos = 1.0f;
+ return;
+ }
+ *sin = __sindf(x);
+ *cos = __cosdf(x);
+ return;
+ }
+
+ /* |x| ~<= 5*pi/4 */
+ if (ix <= 0x407b53d1) {
+ if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
+ if (sign) {
+ *sin = -__cosdf(x + s1pio2);
+ *cos = __sindf(x + s1pio2);
+ } else {
+ *sin = __cosdf(s1pio2 - x);
+ *cos = __sindf(s1pio2 - x);
+ }
+ return;
+ }
+ /* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */
+ *sin = -__sindf(sign ? x + s2pio2 : x - s2pio2);
+ *cos = -__cosdf(sign ? x + s2pio2 : x - s2pio2);
+ return;
+ }
+
+ /* |x| ~<= 9*pi/4 */
+ if (ix <= 0x40e231d5) {
+ if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
+ if (sign) {
+ *sin = __cosdf(x + s3pio2);
+ *cos = -__sindf(x + s3pio2);
+ } else {
+ *sin = -__cosdf(x - s3pio2);
+ *cos = __sindf(x - s3pio2);
+ }
+ return;
+ }
+ *sin = __sindf(sign ? x + s4pio2 : x - s4pio2);
+ *cos = __cosdf(sign ? x + s4pio2 : x - s4pio2);
+ return;
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000) {
+ *sin = *cos = x - x;
+ return;
+ }
+
+ /* general argument reduction needed */
+ n = __rem_pio2f(x, &y);
+ s = __sindf(y);
+ c = __cosdf(y);
+ switch (n&3) {
+ case 0:
+ *sin = s;
+ *cos = c;
+ break;
+ case 1:
+ *sin = c;
+ *cos = -s;
+ break;
+ case 2:
+ *sin = -s;
+ *cos = -c;
+ break;
+ case 3:
+ default:
+ *sin = -c;
+ *cos = s;
+ break;
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sincosl.c b/lib/mlibc/options/ansi/musl-generic-math/sincosl.c
new file mode 100644
index 0000000..d3ac1c4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sincosl.c
@@ -0,0 +1,60 @@
+#define _GNU_SOURCE
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+void sincosl(long double x, long double *sin, long double *cos)
+{
+ double sind, cosd;
+ sincos(x, &sind, &cosd);
+ *sin = sind;
+ *cos = cosd;
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+void sincosl(long double x, long double *sin, long double *cos)
+{
+ union ldshape u = {x};
+ unsigned n;
+ long double y[2], s, c;
+
+ u.i.se &= 0x7fff;
+ if (u.i.se == 0x7fff) {
+ *sin = *cos = x - x;
+ return;
+ }
+ if (u.f < M_PI_4) {
+ if (u.i.se < 0x3fff - LDBL_MANT_DIG) {
+ /* raise underflow if subnormal */
+ if (u.i.se == 0) FORCE_EVAL(x*0x1p-120f);
+ *sin = x;
+ /* raise inexact if x!=0 */
+ *cos = 1.0 + x;
+ return;
+ }
+ *sin = __sinl(x, 0, 0);
+ *cos = __cosl(x, 0);
+ return;
+ }
+ n = __rem_pio2l(x, y);
+ s = __sinl(y[0], y[1], 1);
+ c = __cosl(y[0], y[1]);
+ switch (n & 3) {
+ case 0:
+ *sin = s;
+ *cos = c;
+ break;
+ case 1:
+ *sin = c;
+ *cos = -s;
+ break;
+ case 2:
+ *sin = -s;
+ *cos = -c;
+ break;
+ case 3:
+ default:
+ *sin = -c;
+ *cos = s;
+ break;
+ }
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sinf.c b/lib/mlibc/options/ansi/musl-generic-math/sinf.c
new file mode 100644
index 0000000..64e39f5
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sinf.c
@@ -0,0 +1,76 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* Small multiples of pi/2 rounded to double precision. */
+static const double
+s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
+s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
+s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+
+float sinf(float x)
+{
+ double y;
+ uint32_t ix;
+ int n, sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix >> 31;
+ ix &= 0x7fffffff;
+
+ if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
+ if (ix < 0x39800000) { /* |x| < 2**-12 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
+ return x;
+ }
+ return __sindf(x);
+ }
+ if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
+ if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
+ if (sign)
+ return -__cosdf(x + s1pio2);
+ else
+ return __cosdf(x - s1pio2);
+ }
+ return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
+ }
+ if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
+ if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
+ if (sign)
+ return __cosdf(x + s3pio2);
+ else
+ return -__cosdf(x - s3pio2);
+ }
+ return __sindf(sign ? x + s4pio2 : x - s4pio2);
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000)
+ return x - x;
+
+ /* general argument reduction needed */
+ n = __rem_pio2f(x, &y);
+ switch (n&3) {
+ case 0: return __sindf(y);
+ case 1: return __cosdf(y);
+ case 2: return __sindf(-y);
+ default:
+ return -__cosdf(y);
+ }
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sinh.c b/lib/mlibc/options/ansi/musl-generic-math/sinh.c
new file mode 100644
index 0000000..00022c4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sinh.c
@@ -0,0 +1,39 @@
+#include "libm.h"
+
+/* sinh(x) = (exp(x) - 1/exp(x))/2
+ * = (exp(x)-1 + (exp(x)-1)/exp(x))/2
+ * = x + x^3/6 + o(x^5)
+ */
+double sinh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ uint32_t w;
+ double t, h, absx;
+
+ h = 0.5;
+ if (u.i >> 63)
+ h = -h;
+ /* |x| */
+ u.i &= (uint64_t)-1/2;
+ absx = u.f;
+ w = u.i >> 32;
+
+ /* |x| < log(DBL_MAX) */
+ if (w < 0x40862e42) {
+ t = expm1(absx);
+ if (w < 0x3ff00000) {
+ if (w < 0x3ff00000 - (26<<20))
+ /* note: inexact and underflow are raised by expm1 */
+ /* note: this branch avoids spurious underflow */
+ return x;
+ return h*(2*t - t*t/(t+1));
+ }
+ /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */
+ return h*(t + t/(t+1));
+ }
+
+ /* |x| > log(DBL_MAX) or nan */
+ /* note: the result is stored to handle overflow */
+ t = 2*h*__expo2(absx);
+ return t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sinhf.c b/lib/mlibc/options/ansi/musl-generic-math/sinhf.c
new file mode 100644
index 0000000..6ad19ea
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sinhf.c
@@ -0,0 +1,31 @@
+#include "libm.h"
+
+float sinhf(float x)
+{
+ union {float f; uint32_t i;} u = {.f = x};
+ uint32_t w;
+ float t, h, absx;
+
+ h = 0.5;
+ if (u.i >> 31)
+ h = -h;
+ /* |x| */
+ u.i &= 0x7fffffff;
+ absx = u.f;
+ w = u.i;
+
+ /* |x| < log(FLT_MAX) */
+ if (w < 0x42b17217) {
+ t = expm1f(absx);
+ if (w < 0x3f800000) {
+ if (w < 0x3f800000 - (12<<23))
+ return x;
+ return h*(2*t - t*t/(t+1));
+ }
+ return h*(t + t/(t+1));
+ }
+
+ /* |x| > logf(FLT_MAX) or nan */
+ t = 2*h*__expo2f(absx);
+ return t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sinhl.c b/lib/mlibc/options/ansi/musl-generic-math/sinhl.c
new file mode 100644
index 0000000..b305d4d
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sinhl.c
@@ -0,0 +1,43 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double sinhl(long double x)
+{
+ return sinh(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+long double sinhl(long double x)
+{
+ union ldshape u = {x};
+ unsigned ex = u.i.se & 0x7fff;
+ long double h, t, absx;
+
+ h = 0.5;
+ if (u.i.se & 0x8000)
+ h = -h;
+ /* |x| */
+ u.i.se = ex;
+ absx = u.f;
+
+ /* |x| < log(LDBL_MAX) */
+ if (ex < 0x3fff+13 || (ex == 0x3fff+13 && u.i.m>>32 < 0xb17217f7)) {
+ t = expm1l(absx);
+ if (ex < 0x3fff) {
+ if (ex < 0x3fff-32)
+ return x;
+ return h*(2*t - t*t/(1+t));
+ }
+ return h*(t + t/(t+1));
+ }
+
+ /* |x| > log(LDBL_MAX) or nan */
+ t = expl(0.5*absx);
+ return h*t*t;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double sinhl(long double x)
+{
+ return sinh(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sinl.c b/lib/mlibc/options/ansi/musl-generic-math/sinl.c
new file mode 100644
index 0000000..9c0b16e
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sinl.c
@@ -0,0 +1,41 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double sinl(long double x)
+{
+ return sin(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double sinl(long double x)
+{
+ union ldshape u = {x};
+ unsigned n;
+ long double y[2], hi, lo;
+
+ u.i.se &= 0x7fff;
+ if (u.i.se == 0x7fff)
+ return x - x;
+ if (u.f < M_PI_4) {
+ if (u.i.se < 0x3fff - LDBL_MANT_DIG/2) {
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(u.i.se == 0 ? x*0x1p-120f : x+0x1p120f);
+ return x;
+ }
+ return __sinl(x, 0.0, 0);
+ }
+ n = __rem_pio2l(x, y);
+ hi = y[0];
+ lo = y[1];
+ switch (n & 3) {
+ case 0:
+ return __sinl(hi, lo, 1);
+ case 1:
+ return __cosl(hi, lo);
+ case 2:
+ return -__sinl(hi, lo, 1);
+ case 3:
+ default:
+ return -__cosl(hi, lo);
+ }
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sqrt.c b/lib/mlibc/options/ansi/musl-generic-math/sqrt.c
new file mode 100644
index 0000000..b277567
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sqrt.c
@@ -0,0 +1,185 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebric manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ */
+
+#include "libm.h"
+
+static const double tiny = 1.0e-300;
+
+double sqrt(double x)
+{
+ double z;
+ int32_t sign = (int)0x80000000;
+ int32_t ix0,s0,q,m,t,i;
+ uint32_t r,t1,s1,ix1,q1;
+
+ EXTRACT_WORDS(ix0, ix1, x);
+
+ /* take care of Inf and NaN */
+ if ((ix0&0x7ff00000) == 0x7ff00000) {
+ return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if (ix0 <= 0) {
+ if (((ix0&~sign)|ix1) == 0)
+ return x; /* sqrt(+-0) = +-0 */
+ if (ix0 < 0)
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
+ }
+ /* normalize x */
+ m = ix0>>20;
+ if (m == 0) { /* subnormal x */
+ while (ix0 == 0) {
+ m -= 21;
+ ix0 |= (ix1>>11);
+ ix1 <<= 21;
+ }
+ for (i=0; (ix0&0x00100000) == 0; i++)
+ ix0<<=1;
+ m -= i - 1;
+ ix0 |= ix1>>(32-i);
+ ix1 <<= i;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0&0x000fffff)|0x00100000;
+ if (m & 1) { /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
+ r = 0x00200000; /* r = moving bit from right to left */
+
+ while (r != 0) {
+ t = s0 + r;
+ if (t <= ix0) {
+ s0 = t + r;
+ ix0 -= t;
+ q += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ r = sign;
+ while (r != 0) {
+ t1 = s1 + r;
+ t = s0;
+ if (t < ix0 || (t == ix0 && t1 <= ix1)) {
+ s1 = t1 + r;
+ if ((t1&sign) == sign && (s1&sign) == 0)
+ s0++;
+ ix0 -= t;
+ if (ix1 < t1)
+ ix0--;
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if ((ix0|ix1) != 0) {
+ z = 1.0 - tiny; /* raise inexact flag */
+ if (z >= 1.0) {
+ z = 1.0 + tiny;
+ if (q1 == (uint32_t)0xffffffff) {
+ q1 = 0;
+ q++;
+ } else if (z > 1.0) {
+ if (q1 == (uint32_t)0xfffffffe)
+ q++;
+ q1 += 2;
+ } else
+ q1 += q1 & 1;
+ }
+ }
+ ix0 = (q>>1) + 0x3fe00000;
+ ix1 = q1>>1;
+ if (q&1)
+ ix1 |= sign;
+ ix0 += m << 20;
+ INSERT_WORDS(z, ix0, ix1);
+ return z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sqrtf.c b/lib/mlibc/options/ansi/musl-generic-math/sqrtf.c
new file mode 100644
index 0000000..28cb4ad
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sqrtf.c
@@ -0,0 +1,84 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float tiny = 1.0e-30;
+
+float sqrtf(float x)
+{
+ float z;
+ int32_t sign = (int)0x80000000;
+ int32_t ix,s,q,m,t,i;
+ uint32_t r;
+
+ GET_FLOAT_WORD(ix, x);
+
+ /* take care of Inf and NaN */
+ if ((ix&0x7f800000) == 0x7f800000)
+ return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+
+ /* take care of zero */
+ if (ix <= 0) {
+ if ((ix&~sign) == 0)
+ return x; /* sqrt(+-0) = +-0 */
+ if (ix < 0)
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
+ }
+ /* normalize x */
+ m = ix>>23;
+ if (m == 0) { /* subnormal x */
+ for (i = 0; (ix&0x00800000) == 0; i++)
+ ix<<=1;
+ m -= i - 1;
+ }
+ m -= 127; /* unbias exponent */
+ ix = (ix&0x007fffff)|0x00800000;
+ if (m&1) /* odd m, double x to make it even */
+ ix += ix;
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix += ix;
+ q = s = 0; /* q = sqrt(x) */
+ r = 0x01000000; /* r = moving bit from right to left */
+
+ while (r != 0) {
+ t = s + r;
+ if (t <= ix) {
+ s = t+r;
+ ix -= t;
+ q += r;
+ }
+ ix += ix;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if (ix != 0) {
+ z = 1.0f - tiny; /* raise inexact flag */
+ if (z >= 1.0f) {
+ z = 1.0f + tiny;
+ if (z > 1.0f)
+ q += 2;
+ else
+ q += q & 1;
+ }
+ }
+ ix = (q>>1) + 0x3f000000;
+ ix += m << 23;
+ SET_FLOAT_WORD(z, ix);
+ return z;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sqrtl.c b/lib/mlibc/options/ansi/musl-generic-math/sqrtl.c
new file mode 100644
index 0000000..83a8f80
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/sqrtl.c
@@ -0,0 +1,7 @@
+#include <math.h>
+
+long double sqrtl(long double x)
+{
+ /* FIXME: implement in C, this is for LDBL_MANT_DIG == 64 only */
+ return sqrt(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tan.c b/lib/mlibc/options/ansi/musl-generic-math/tan.c
new file mode 100644
index 0000000..9c724a4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tan.c
@@ -0,0 +1,70 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ * __tan ... tangent function on [-pi/4,pi/4]
+ * __rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "libm.h"
+
+double tan(double x)
+{
+ double y[2];
+ uint32_t ix;
+ unsigned n;
+
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if (ix <= 0x3fe921fb) {
+ if (ix < 0x3e400000) { /* |x| < 2**-27 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
+ return x;
+ }
+ return __tan(x, 0.0, 0);
+ }
+
+ /* tan(Inf or NaN) is NaN */
+ if (ix >= 0x7ff00000)
+ return x - x;
+
+ /* argument reduction */
+ n = __rem_pio2(x, y);
+ return __tan(y[0], y[1], n&1);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tanf.c b/lib/mlibc/options/ansi/musl-generic-math/tanf.c
new file mode 100644
index 0000000..aba1977
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tanf.c
@@ -0,0 +1,64 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_tanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* Small multiples of pi/2 rounded to double precision. */
+static const double
+t1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+t2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
+t3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
+t4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+
+float tanf(float x)
+{
+ double y;
+ uint32_t ix;
+ unsigned n, sign;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix >> 31;
+ ix &= 0x7fffffff;
+
+ if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
+ if (ix < 0x39800000) { /* |x| < 2**-12 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
+ return x;
+ }
+ return __tandf(x, 0);
+ }
+ if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
+ if (ix <= 0x4016cbe3) /* |x| ~<= 3pi/4 */
+ return __tandf((sign ? x+t1pio2 : x-t1pio2), 1);
+ else
+ return __tandf((sign ? x+t2pio2 : x-t2pio2), 0);
+ }
+ if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
+ if (ix <= 0x40afeddf) /* |x| ~<= 7*pi/4 */
+ return __tandf((sign ? x+t3pio2 : x-t3pio2), 1);
+ else
+ return __tandf((sign ? x+t4pio2 : x-t4pio2), 0);
+ }
+
+ /* tan(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000)
+ return x - x;
+
+ /* argument reduction */
+ n = __rem_pio2f(x, &y);
+ return __tandf(y, n&1);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tanh.c b/lib/mlibc/options/ansi/musl-generic-math/tanh.c
new file mode 100644
index 0000000..20d6dbc
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tanh.c
@@ -0,0 +1,45 @@
+#include "libm.h"
+
+/* tanh(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x))
+ * = (exp(2*x) - 1)/(exp(2*x) - 1 + 2)
+ * = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2)
+ */
+double tanh(double x)
+{
+ union {double f; uint64_t i;} u = {.f = x};
+ uint32_t w;
+ int sign;
+ double_t t;
+
+ /* x = |x| */
+ sign = u.i >> 63;
+ u.i &= (uint64_t)-1/2;
+ x = u.f;
+ w = u.i >> 32;
+
+ if (w > 0x3fe193ea) {
+ /* |x| > log(3)/2 ~= 0.5493 or nan */
+ if (w > 0x40340000) {
+ /* |x| > 20 or nan */
+ /* note: this branch avoids raising overflow */
+ t = 1 - 0/x;
+ } else {
+ t = expm1(2*x);
+ t = 1 - 2/(t+2);
+ }
+ } else if (w > 0x3fd058ae) {
+ /* |x| > log(5/3)/2 ~= 0.2554 */
+ t = expm1(2*x);
+ t = t/(t+2);
+ } else if (w >= 0x00100000) {
+ /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
+ t = expm1(-2*x);
+ t = -t/(t+2);
+ } else {
+ /* |x| is subnormal */
+ /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
+ FORCE_EVAL((float)x);
+ t = x;
+ }
+ return sign ? -t : t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tanhf.c b/lib/mlibc/options/ansi/musl-generic-math/tanhf.c
new file mode 100644
index 0000000..10636fb
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tanhf.c
@@ -0,0 +1,39 @@
+#include "libm.h"
+
+float tanhf(float x)
+{
+ union {float f; uint32_t i;} u = {.f = x};
+ uint32_t w;
+ int sign;
+ float t;
+
+ /* x = |x| */
+ sign = u.i >> 31;
+ u.i &= 0x7fffffff;
+ x = u.f;
+ w = u.i;
+
+ if (w > 0x3f0c9f54) {
+ /* |x| > log(3)/2 ~= 0.5493 or nan */
+ if (w > 0x41200000) {
+ /* |x| > 10 */
+ t = 1 + 0/x;
+ } else {
+ t = expm1f(2*x);
+ t = 1 - 2/(t+2);
+ }
+ } else if (w > 0x3e82c578) {
+ /* |x| > log(5/3)/2 ~= 0.2554 */
+ t = expm1f(2*x);
+ t = t/(t+2);
+ } else if (w >= 0x00800000) {
+ /* |x| >= 0x1p-126 */
+ t = expm1f(-2*x);
+ t = -t/(t+2);
+ } else {
+ /* |x| is subnormal */
+ FORCE_EVAL(x*x);
+ t = x;
+ }
+ return sign ? -t : t;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tanhl.c b/lib/mlibc/options/ansi/musl-generic-math/tanhl.c
new file mode 100644
index 0000000..4e1aa9f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tanhl.c
@@ -0,0 +1,48 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double tanhl(long double x)
+{
+ return tanh(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+long double tanhl(long double x)
+{
+ union ldshape u = {x};
+ unsigned ex = u.i.se & 0x7fff;
+ unsigned sign = u.i.se & 0x8000;
+ uint32_t w;
+ long double t;
+
+ /* x = |x| */
+ u.i.se = ex;
+ x = u.f;
+ w = u.i.m >> 32;
+
+ if (ex > 0x3ffe || (ex == 0x3ffe && w > 0x8c9f53d5)) {
+ /* |x| > log(3)/2 ~= 0.5493 or nan */
+ if (ex >= 0x3fff+5) {
+ /* |x| >= 32 */
+ t = 1 + 0/(x + 0x1p-120f);
+ } else {
+ t = expm1l(2*x);
+ t = 1 - 2/(t+2);
+ }
+ } else if (ex > 0x3ffd || (ex == 0x3ffd && w > 0x82c577d4)) {
+ /* |x| > log(5/3)/2 ~= 0.2554 */
+ t = expm1l(2*x);
+ t = t/(t+2);
+ } else {
+ /* |x| is small */
+ t = expm1l(-2*x);
+ t = -t/(t+2);
+ }
+ return sign ? -t : t;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double tanhl(long double x)
+{
+ return tanh(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tanl.c b/lib/mlibc/options/ansi/musl-generic-math/tanl.c
new file mode 100644
index 0000000..6af0671
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tanl.c
@@ -0,0 +1,29 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double tanl(long double x)
+{
+ return tan(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+long double tanl(long double x)
+{
+ union ldshape u = {x};
+ long double y[2];
+ unsigned n;
+
+ u.i.se &= 0x7fff;
+ if (u.i.se == 0x7fff)
+ return x - x;
+ if (u.f < M_PI_4) {
+ if (u.i.se < 0x3fff - LDBL_MANT_DIG/2) {
+ /* raise inexact if x!=0 and underflow if subnormal */
+ FORCE_EVAL(u.i.se == 0 ? x*0x1p-120f : x+0x1p120f);
+ return x;
+ }
+ return __tanl(x, 0, 0);
+ }
+ n = __rem_pio2l(x, y);
+ return __tanl(y[0], y[1], n&1);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tgamma.c b/lib/mlibc/options/ansi/musl-generic-math/tgamma.c
new file mode 100644
index 0000000..28f6e0f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tgamma.c
@@ -0,0 +1,222 @@
+/*
+"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
+"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
+"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
+
+approximation method:
+
+ (x - 0.5) S(x)
+Gamma(x) = (x + g - 0.5) * ----------------
+ exp(x + g - 0.5)
+
+with
+ a1 a2 a3 aN
+S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
+ x + 1 x + 2 x + 3 x + N
+
+with a0, a1, a2, a3,.. aN constants which depend on g.
+
+for x < 0 the following reflection formula is used:
+
+Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
+
+most ideas and constants are from boost and python
+*/
+#include "libm.h"
+
+static const double pi = 3.141592653589793238462643383279502884;
+
+/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
+static double sinpi(double x)
+{
+ int n;
+
+ /* argument reduction: x = |x| mod 2 */
+ /* spurious inexact when x is odd int */
+ x = x * 0.5;
+ x = 2 * (x - floor(x));
+
+ /* reduce x into [-.25,.25] */
+ n = 4 * x;
+ n = (n+1)/2;
+ x -= n * 0.5;
+
+ x *= pi;
+ switch (n) {
+ default: /* case 4 */
+ case 0:
+ return __sin(x, 0, 0);
+ case 1:
+ return __cos(x, 0);
+ case 2:
+ return __sin(-x, 0, 0);
+ case 3:
+ return -__cos(x, 0);
+ }
+}
+
+#define N 12
+//static const double g = 6.024680040776729583740234375;
+static const double gmhalf = 5.524680040776729583740234375;
+static const double Snum[N+1] = {
+ 23531376880.410759688572007674451636754734846804940,
+ 42919803642.649098768957899047001988850926355848959,
+ 35711959237.355668049440185451547166705960488635843,
+ 17921034426.037209699919755754458931112671403265390,
+ 6039542586.3520280050642916443072979210699388420708,
+ 1439720407.3117216736632230727949123939715485786772,
+ 248874557.86205415651146038641322942321632125127801,
+ 31426415.585400194380614231628318205362874684987640,
+ 2876370.6289353724412254090516208496135991145378768,
+ 186056.26539522349504029498971604569928220784236328,
+ 8071.6720023658162106380029022722506138218516325024,
+ 210.82427775157934587250973392071336271166969580291,
+ 2.5066282746310002701649081771338373386264310793408,
+};
+static const double Sden[N+1] = {
+ 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
+ 2637558, 357423, 32670, 1925, 66, 1,
+};
+/* n! for small integer n */
+static const double fact[] = {
+ 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
+ 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
+ 355687428096000.0, 6402373705728000.0, 121645100408832000.0,
+ 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
+};
+
+/* S(x) rational function for positive x */
+static double S(double x)
+{
+ double_t num = 0, den = 0;
+ int i;
+
+ /* to avoid overflow handle large x differently */
+ if (x < 8)
+ for (i = N; i >= 0; i--) {
+ num = num * x + Snum[i];
+ den = den * x + Sden[i];
+ }
+ else
+ for (i = 0; i <= N; i++) {
+ num = num / x + Snum[i];
+ den = den / x + Sden[i];
+ }
+ return num/den;
+}
+
+double tgamma(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double absx, y;
+ double_t dy, z, r;
+ uint32_t ix = u.i>>32 & 0x7fffffff;
+ int sign = u.i>>63;
+
+ /* special cases */
+ if (ix >= 0x7ff00000)
+ /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+ return x + INFINITY;
+ if (ix < (0x3ff-54)<<20)
+ /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
+ return 1/x;
+
+ /* integer arguments */
+ /* raise inexact when non-integer */
+ if (x == floor(x)) {
+ if (sign)
+ return 0/0.0;
+ if (x <= sizeof fact/sizeof *fact)
+ return fact[(int)x - 1];
+ }
+
+ /* x >= 172: tgamma(x)=inf with overflow */
+ /* x =< -184: tgamma(x)=+-0 with underflow */
+ if (ix >= 0x40670000) { /* |x| >= 184 */
+ if (sign) {
+ FORCE_EVAL((float)(0x1p-126/x));
+ if (floor(x) * 0.5 == floor(x * 0.5))
+ return 0;
+ return -0.0;
+ }
+ x *= 0x1p1023;
+ return x;
+ }
+
+ absx = sign ? -x : x;
+
+ /* handle the error of x + g - 0.5 */
+ y = absx + gmhalf;
+ if (absx > gmhalf) {
+ dy = y - absx;
+ dy -= gmhalf;
+ } else {
+ dy = y - gmhalf;
+ dy -= absx;
+ }
+
+ z = absx - 0.5;
+ r = S(absx) * exp(-y);
+ if (x < 0) {
+ /* reflection formula for negative x */
+ /* sinpi(absx) is not 0, integers are already handled */
+ r = -pi / (sinpi(absx) * absx * r);
+ dy = -dy;
+ z = -z;
+ }
+ r += dy * (gmhalf+0.5) * r / y;
+ z = pow(y, 0.5*z);
+ y = r * z * z;
+ return y;
+}
+
+#if 0
+double __lgamma_r(double x, int *sign)
+{
+ double r, absx;
+
+ *sign = 1;
+
+ /* special cases */
+ if (!isfinite(x))
+ /* lgamma(nan)=nan, lgamma(+-inf)=inf */
+ return x*x;
+
+ /* integer arguments */
+ if (x == floor(x) && x <= 2) {
+ /* n <= 0: lgamma(n)=inf with divbyzero */
+ /* n == 1,2: lgamma(n)=0 */
+ if (x <= 0)
+ return 1/0.0;
+ return 0;
+ }
+
+ absx = fabs(x);
+
+ /* lgamma(x) ~ -log(|x|) for tiny |x| */
+ if (absx < 0x1p-54) {
+ *sign = 1 - 2*!!signbit(x);
+ return -log(absx);
+ }
+
+ /* use tgamma for smaller |x| */
+ if (absx < 128) {
+ x = tgamma(x);
+ *sign = 1 - 2*!!signbit(x);
+ return log(fabs(x));
+ }
+
+ /* second term (log(S)-g) could be more precise here.. */
+ /* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */
+ r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5));
+ if (x < 0) {
+ /* reflection formula for negative x */
+ x = sinpi(absx);
+ *sign = 2*!!signbit(x) - 1;
+ r = log(pi/(fabs(x)*absx)) - r;
+ }
+ return r;
+}
+
+weak_alias(__lgamma_r, lgamma_r);
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tgammaf.c b/lib/mlibc/options/ansi/musl-generic-math/tgammaf.c
new file mode 100644
index 0000000..b4ca51c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tgammaf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+float tgammaf(float x)
+{
+ return tgamma(x);
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tgammal.c b/lib/mlibc/options/ansi/musl-generic-math/tgammal.c
new file mode 100644
index 0000000..5336c5b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/tgammal.c
@@ -0,0 +1,281 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Gamma function
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, tgammal();
+ *
+ * y = tgammal( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns gamma function of the argument. The result is
+ * correctly signed.
+ *
+ * Arguments |x| <= 13 are reduced by recurrence and the function
+ * approximated by a rational function of degree 7/8 in the
+ * interval (2,3). Large arguments are handled by Stirling's
+ * formula. Large negative arguments are made positive using
+ * a reflection formula.
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -40,+40 10000 3.6e-19 7.9e-20
+ * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
+ *
+ * Accuracy for large arguments is dominated by error in powl().
+ *
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double tgammal(long double x)
+{
+ return tgamma(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/*
+tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
+0 <= x <= 1
+Relative error
+n=7, d=8
+Peak error = 1.83e-20
+Relative error spread = 8.4e-23
+*/
+static const long double P[8] = {
+ 4.212760487471622013093E-5L,
+ 4.542931960608009155600E-4L,
+ 4.092666828394035500949E-3L,
+ 2.385363243461108252554E-2L,
+ 1.113062816019361559013E-1L,
+ 3.629515436640239168939E-1L,
+ 8.378004301573126728826E-1L,
+ 1.000000000000000000009E0L,
+};
+static const long double Q[9] = {
+-1.397148517476170440917E-5L,
+ 2.346584059160635244282E-4L,
+-1.237799246653152231188E-3L,
+-7.955933682494738320586E-4L,
+ 2.773706565840072979165E-2L,
+-4.633887671244534213831E-2L,
+-2.243510905670329164562E-1L,
+ 4.150160950588455434583E-1L,
+ 9.999999999999999999908E-1L,
+};
+
+/*
+static const long double P[] = {
+-3.01525602666895735709e0L,
+-3.25157411956062339893e1L,
+-2.92929976820724030353e2L,
+-1.70730828800510297666e3L,
+-7.96667499622741999770e3L,
+-2.59780216007146401957e4L,
+-5.99650230220855581642e4L,
+-7.15743521530849602425e4L
+};
+static const long double Q[] = {
+ 1.00000000000000000000e0L,
+-1.67955233807178858919e1L,
+ 8.85946791747759881659e1L,
+ 5.69440799097468430177e1L,
+-1.98526250512761318471e3L,
+ 3.31667508019495079814e3L,
+ 1.60577839621734713377e4L,
+-2.97045081369399940529e4L,
+-7.15743521530849602412e4L
+};
+*/
+#define MAXGAML 1755.455L
+/*static const long double LOGPI = 1.14472988584940017414L;*/
+
+/* Stirling's formula for the gamma function
+tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
+z(x) = x
+13 <= x <= 1024
+Relative error
+n=8, d=0
+Peak error = 9.44e-21
+Relative error spread = 8.8e-4
+*/
+static const long double STIR[9] = {
+ 7.147391378143610789273E-4L,
+-2.363848809501759061727E-5L,
+-5.950237554056330156018E-4L,
+ 6.989332260623193171870E-5L,
+ 7.840334842744753003862E-4L,
+-2.294719747873185405699E-4L,
+-2.681327161876304418288E-3L,
+ 3.472222222230075327854E-3L,
+ 8.333333333333331800504E-2L,
+};
+
+#define MAXSTIR 1024.0L
+static const long double SQTPI = 2.50662827463100050242E0L;
+
+/* 1/tgamma(x) = z P(z)
+ * z(x) = 1/x
+ * 0 < x < 0.03125
+ * Peak relative error 4.2e-23
+ */
+static const long double S[9] = {
+-1.193945051381510095614E-3L,
+ 7.220599478036909672331E-3L,
+-9.622023360406271645744E-3L,
+-4.219773360705915470089E-2L,
+ 1.665386113720805206758E-1L,
+-4.200263503403344054473E-2L,
+-6.558780715202540684668E-1L,
+ 5.772156649015328608253E-1L,
+ 1.000000000000000000000E0L,
+};
+
+/* 1/tgamma(-x) = z P(z)
+ * z(x) = 1/x
+ * 0 < x < 0.03125
+ * Peak relative error 5.16e-23
+ * Relative error spread = 2.5e-24
+ */
+static const long double SN[9] = {
+ 1.133374167243894382010E-3L,
+ 7.220837261893170325704E-3L,
+ 9.621911155035976733706E-3L,
+-4.219773343731191721664E-2L,
+-1.665386113944413519335E-1L,
+-4.200263503402112910504E-2L,
+ 6.558780715202536547116E-1L,
+ 5.772156649015328608727E-1L,
+-1.000000000000000000000E0L,
+};
+
+static const long double PIL = 3.1415926535897932384626L;
+
+/* Gamma function computed by Stirling's formula.
+ */
+static long double stirf(long double x)
+{
+ long double y, w, v;
+
+ w = 1.0/x;
+ /* For large x, use rational coefficients from the analytical expansion. */
+ if (x > 1024.0)
+ w = (((((6.97281375836585777429E-5L * w
+ + 7.84039221720066627474E-4L) * w
+ - 2.29472093621399176955E-4L) * w
+ - 2.68132716049382716049E-3L) * w
+ + 3.47222222222222222222E-3L) * w
+ + 8.33333333333333333333E-2L) * w
+ + 1.0;
+ else
+ w = 1.0 + w * __polevll(w, STIR, 8);
+ y = expl(x);
+ if (x > MAXSTIR) { /* Avoid overflow in pow() */
+ v = powl(x, 0.5L * x - 0.25L);
+ y = v * (v / y);
+ } else {
+ y = powl(x, x - 0.5L) / y;
+ }
+ y = SQTPI * y * w;
+ return y;
+}
+
+long double tgammal(long double x)
+{
+ long double p, q, z;
+
+ if (!isfinite(x))
+ return x + INFINITY;
+
+ q = fabsl(x);
+ if (q > 13.0) {
+ if (x < 0.0) {
+ p = floorl(q);
+ z = q - p;
+ if (z == 0)
+ return 0 / z;
+ if (q > MAXGAML) {
+ z = 0;
+ } else {
+ if (z > 0.5) {
+ p += 1.0;
+ z = q - p;
+ }
+ z = q * sinl(PIL * z);
+ z = fabsl(z) * stirf(q);
+ z = PIL/z;
+ }
+ if (0.5 * p == floorl(q * 0.5))
+ z = -z;
+ } else if (x > MAXGAML) {
+ z = x * 0x1p16383L;
+ } else {
+ z = stirf(x);
+ }
+ return z;
+ }
+
+ z = 1.0;
+ while (x >= 3.0) {
+ x -= 1.0;
+ z *= x;
+ }
+ while (x < -0.03125L) {
+ z /= x;
+ x += 1.0;
+ }
+ if (x <= 0.03125L)
+ goto small;
+ while (x < 2.0) {
+ z /= x;
+ x += 1.0;
+ }
+ if (x == 2.0)
+ return z;
+
+ x -= 2.0;
+ p = __polevll(x, P, 7);
+ q = __polevll(x, Q, 8);
+ z = z * p / q;
+ return z;
+
+small:
+ /* z==1 if x was originally +-0 */
+ if (x == 0 && z != 1)
+ return x / x;
+ if (x < 0.0) {
+ x = -x;
+ q = z / (x * __polevll(x, SN, 8));
+ } else
+ q = z / (x * __polevll(x, S, 8));
+ return q;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double tgammal(long double x)
+{
+ return tgamma(x);
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/trunc.c b/lib/mlibc/options/ansi/musl-generic-math/trunc.c
new file mode 100644
index 0000000..d13711b
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/trunc.c
@@ -0,0 +1,19 @@
+#include "libm.h"
+
+double trunc(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff + 12;
+ uint64_t m;
+
+ if (e >= 52 + 12)
+ return x;
+ if (e < 12)
+ e = 1;
+ m = -1ULL >> e;
+ if ((u.i & m) == 0)
+ return x;
+ FORCE_EVAL(x + 0x1p120f);
+ u.i &= ~m;
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/truncf.c b/lib/mlibc/options/ansi/musl-generic-math/truncf.c
new file mode 100644
index 0000000..1a7d03c
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/truncf.c
@@ -0,0 +1,19 @@
+#include "libm.h"
+
+float truncf(float x)
+{
+ union {float f; uint32_t i;} u = {x};
+ int e = (int)(u.i >> 23 & 0xff) - 0x7f + 9;
+ uint32_t m;
+
+ if (e >= 23 + 9)
+ return x;
+ if (e < 9)
+ e = 1;
+ m = -1U >> e;
+ if ((u.i & m) == 0)
+ return x;
+ FORCE_EVAL(x + 0x1p120f);
+ u.i &= ~m;
+ return u.f;
+}
diff --git a/lib/mlibc/options/ansi/musl-generic-math/truncl.c b/lib/mlibc/options/ansi/musl-generic-math/truncl.c
new file mode 100644
index 0000000..f07b193
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/truncl.c
@@ -0,0 +1,34 @@
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double truncl(long double x)
+{
+ return trunc(x);
+}
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
+
+static const long double toint = 1/LDBL_EPSILON;
+
+long double truncl(long double x)
+{
+ union ldshape u = {x};
+ int e = u.i.se & 0x7fff;
+ int s = u.i.se >> 15;
+ long double y;
+
+ if (e >= 0x3fff+LDBL_MANT_DIG-1)
+ return x;
+ if (e <= 0x3fff-1) {
+ FORCE_EVAL(x + 0x1p120f);
+ return x*0;
+ }
+ /* y = int(|x|) - |x|, where int(|x|) is an integer neighbor of |x| */
+ if (s)
+ x = -x;
+ y = x + toint - toint - x;
+ if (y > 0)
+ y -= 1;
+ x += y;
+ return s ? -x : x;
+}
+#endif
diff --git a/lib/mlibc/options/ansi/musl-generic-math/weak_alias.h b/lib/mlibc/options/ansi/musl-generic-math/weak_alias.h
new file mode 100644
index 0000000..785f9d1
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/weak_alias.h
@@ -0,0 +1,7 @@
+#ifndef _WEAK_ALIAS_H
+#define _WEAK_ALIAS_H
+
+#define weak_alias(name, alias_to) \
+ extern __typeof (name) alias_to __attribute__((__weak__, __alias__(#name)));
+
+#endif