aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/tgammal.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/tgammal.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tgammal.c281
1 files changed, 0 insertions, 281 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tgammal.c b/lib/mlibc/options/ansi/musl-generic-math/tgammal.c
deleted file mode 100644
index 5336c5b..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/tgammal.c
+++ /dev/null
@@ -1,281 +0,0 @@
-/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
-/*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-/*
- * Gamma function
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, tgammal();
- *
- * y = tgammal( x );
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is
- * correctly signed.
- *
- * Arguments |x| <= 13 are reduced by recurrence and the function
- * approximated by a rational function of degree 7/8 in the
- * interval (2,3). Large arguments are handled by Stirling's
- * formula. Large negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -40,+40 10000 3.6e-19 7.9e-20
- * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
- *
- * Accuracy for large arguments is dominated by error in powl().
- *
- */
-
-#include "libm.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double tgammal(long double x)
-{
- return tgamma(x);
-}
-#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-/*
-tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
-0 <= x <= 1
-Relative error
-n=7, d=8
-Peak error = 1.83e-20
-Relative error spread = 8.4e-23
-*/
-static const long double P[8] = {
- 4.212760487471622013093E-5L,
- 4.542931960608009155600E-4L,
- 4.092666828394035500949E-3L,
- 2.385363243461108252554E-2L,
- 1.113062816019361559013E-1L,
- 3.629515436640239168939E-1L,
- 8.378004301573126728826E-1L,
- 1.000000000000000000009E0L,
-};
-static const long double Q[9] = {
--1.397148517476170440917E-5L,
- 2.346584059160635244282E-4L,
--1.237799246653152231188E-3L,
--7.955933682494738320586E-4L,
- 2.773706565840072979165E-2L,
--4.633887671244534213831E-2L,
--2.243510905670329164562E-1L,
- 4.150160950588455434583E-1L,
- 9.999999999999999999908E-1L,
-};
-
-/*
-static const long double P[] = {
--3.01525602666895735709e0L,
--3.25157411956062339893e1L,
--2.92929976820724030353e2L,
--1.70730828800510297666e3L,
--7.96667499622741999770e3L,
--2.59780216007146401957e4L,
--5.99650230220855581642e4L,
--7.15743521530849602425e4L
-};
-static const long double Q[] = {
- 1.00000000000000000000e0L,
--1.67955233807178858919e1L,
- 8.85946791747759881659e1L,
- 5.69440799097468430177e1L,
--1.98526250512761318471e3L,
- 3.31667508019495079814e3L,
- 1.60577839621734713377e4L,
--2.97045081369399940529e4L,
--7.15743521530849602412e4L
-};
-*/
-#define MAXGAML 1755.455L
-/*static const long double LOGPI = 1.14472988584940017414L;*/
-
-/* Stirling's formula for the gamma function
-tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
-z(x) = x
-13 <= x <= 1024
-Relative error
-n=8, d=0
-Peak error = 9.44e-21
-Relative error spread = 8.8e-4
-*/
-static const long double STIR[9] = {
- 7.147391378143610789273E-4L,
--2.363848809501759061727E-5L,
--5.950237554056330156018E-4L,
- 6.989332260623193171870E-5L,
- 7.840334842744753003862E-4L,
--2.294719747873185405699E-4L,
--2.681327161876304418288E-3L,
- 3.472222222230075327854E-3L,
- 8.333333333333331800504E-2L,
-};
-
-#define MAXSTIR 1024.0L
-static const long double SQTPI = 2.50662827463100050242E0L;
-
-/* 1/tgamma(x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 4.2e-23
- */
-static const long double S[9] = {
--1.193945051381510095614E-3L,
- 7.220599478036909672331E-3L,
--9.622023360406271645744E-3L,
--4.219773360705915470089E-2L,
- 1.665386113720805206758E-1L,
--4.200263503403344054473E-2L,
--6.558780715202540684668E-1L,
- 5.772156649015328608253E-1L,
- 1.000000000000000000000E0L,
-};
-
-/* 1/tgamma(-x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 5.16e-23
- * Relative error spread = 2.5e-24
- */
-static const long double SN[9] = {
- 1.133374167243894382010E-3L,
- 7.220837261893170325704E-3L,
- 9.621911155035976733706E-3L,
--4.219773343731191721664E-2L,
--1.665386113944413519335E-1L,
--4.200263503402112910504E-2L,
- 6.558780715202536547116E-1L,
- 5.772156649015328608727E-1L,
--1.000000000000000000000E0L,
-};
-
-static const long double PIL = 3.1415926535897932384626L;
-
-/* Gamma function computed by Stirling's formula.
- */
-static long double stirf(long double x)
-{
- long double y, w, v;
-
- w = 1.0/x;
- /* For large x, use rational coefficients from the analytical expansion. */
- if (x > 1024.0)
- w = (((((6.97281375836585777429E-5L * w
- + 7.84039221720066627474E-4L) * w
- - 2.29472093621399176955E-4L) * w
- - 2.68132716049382716049E-3L) * w
- + 3.47222222222222222222E-3L) * w
- + 8.33333333333333333333E-2L) * w
- + 1.0;
- else
- w = 1.0 + w * __polevll(w, STIR, 8);
- y = expl(x);
- if (x > MAXSTIR) { /* Avoid overflow in pow() */
- v = powl(x, 0.5L * x - 0.25L);
- y = v * (v / y);
- } else {
- y = powl(x, x - 0.5L) / y;
- }
- y = SQTPI * y * w;
- return y;
-}
-
-long double tgammal(long double x)
-{
- long double p, q, z;
-
- if (!isfinite(x))
- return x + INFINITY;
-
- q = fabsl(x);
- if (q > 13.0) {
- if (x < 0.0) {
- p = floorl(q);
- z = q - p;
- if (z == 0)
- return 0 / z;
- if (q > MAXGAML) {
- z = 0;
- } else {
- if (z > 0.5) {
- p += 1.0;
- z = q - p;
- }
- z = q * sinl(PIL * z);
- z = fabsl(z) * stirf(q);
- z = PIL/z;
- }
- if (0.5 * p == floorl(q * 0.5))
- z = -z;
- } else if (x > MAXGAML) {
- z = x * 0x1p16383L;
- } else {
- z = stirf(x);
- }
- return z;
- }
-
- z = 1.0;
- while (x >= 3.0) {
- x -= 1.0;
- z *= x;
- }
- while (x < -0.03125L) {
- z /= x;
- x += 1.0;
- }
- if (x <= 0.03125L)
- goto small;
- while (x < 2.0) {
- z /= x;
- x += 1.0;
- }
- if (x == 2.0)
- return z;
-
- x -= 2.0;
- p = __polevll(x, P, 7);
- q = __polevll(x, Q, 8);
- z = z * p / q;
- return z;
-
-small:
- /* z==1 if x was originally +-0 */
- if (x == 0 && z != 1)
- return x / x;
- if (x < 0.0) {
- x = -x;
- q = z / (x * __polevll(x, SN, 8));
- } else
- q = z / (x * __polevll(x, S, 8));
- return q;
-}
-#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-// TODO: broken implementation to make things compile
-long double tgammal(long double x)
-{
- return tgamma(x);
-}
-#endif