summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/tan.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/tan.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/tan.c70
1 files changed, 0 insertions, 70 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/tan.c b/lib/mlibc/options/ansi/musl-generic-math/tan.c
deleted file mode 100644
index 9c724a4..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/tan.c
+++ /dev/null
@@ -1,70 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* tan(x)
- * Return tangent function of x.
- *
- * kernel function:
- * __tan ... tangent function on [-pi/4,pi/4]
- * __rem_pio2 ... argument reduction routine
- *
- * Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
- * in [-pi/4 , +pi/4], and let n = k mod 4.
- * We have
- *
- * n sin(x) cos(x) tan(x)
- * ----------------------------------------------------------
- * 0 S C T
- * 1 C -S -1/T
- * 2 -S -C T
- * 3 -C S -1/T
- * ----------------------------------------------------------
- *
- * Special cases:
- * Let trig be any of sin, cos, or tan.
- * trig(+-INF) is NaN, with signals;
- * trig(NaN) is that NaN;
- *
- * Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
- */
-
-#include "libm.h"
-
-double tan(double x)
-{
- double y[2];
- uint32_t ix;
- unsigned n;
-
- GET_HIGH_WORD(ix, x);
- ix &= 0x7fffffff;
-
- /* |x| ~< pi/4 */
- if (ix <= 0x3fe921fb) {
- if (ix < 0x3e400000) { /* |x| < 2**-27 */
- /* raise inexact if x!=0 and underflow if subnormal */
- FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
- return x;
- }
- return __tan(x, 0.0, 0);
- }
-
- /* tan(Inf or NaN) is NaN */
- if (ix >= 0x7ff00000)
- return x - x;
-
- /* argument reduction */
- n = __rem_pio2(x, y);
- return __tan(y[0], y[1], n&1);
-}