summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/sqrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/sqrt.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/sqrt.c185
1 files changed, 0 insertions, 185 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/sqrt.c b/lib/mlibc/options/ansi/musl-generic-math/sqrt.c
deleted file mode 100644
index b277567..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/sqrt.c
+++ /dev/null
@@ -1,185 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* sqrt(x)
- * Return correctly rounded sqrt.
- * ------------------------------------------
- * | Use the hardware sqrt if you have one |
- * ------------------------------------------
- * Method:
- * Bit by bit method using integer arithmetic. (Slow, but portable)
- * 1. Normalization
- * Scale x to y in [1,4) with even powers of 2:
- * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
- * sqrt(x) = 2^k * sqrt(y)
- * 2. Bit by bit computation
- * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
- * i 0
- * i+1 2
- * s = 2*q , and y = 2 * ( y - q ). (1)
- * i i i i
- *
- * To compute q from q , one checks whether
- * i+1 i
- *
- * -(i+1) 2
- * (q + 2 ) <= y. (2)
- * i
- * -(i+1)
- * If (2) is false, then q = q ; otherwise q = q + 2 .
- * i+1 i i+1 i
- *
- * With some algebric manipulation, it is not difficult to see
- * that (2) is equivalent to
- * -(i+1)
- * s + 2 <= y (3)
- * i i
- *
- * The advantage of (3) is that s and y can be computed by
- * i i
- * the following recurrence formula:
- * if (3) is false
- *
- * s = s , y = y ; (4)
- * i+1 i i+1 i
- *
- * otherwise,
- * -i -(i+1)
- * s = s + 2 , y = y - s - 2 (5)
- * i+1 i i+1 i i
- *
- * One may easily use induction to prove (4) and (5).
- * Note. Since the left hand side of (3) contain only i+2 bits,
- * it does not necessary to do a full (53-bit) comparison
- * in (3).
- * 3. Final rounding
- * After generating the 53 bits result, we compute one more bit.
- * Together with the remainder, we can decide whether the
- * result is exact, bigger than 1/2ulp, or less than 1/2ulp
- * (it will never equal to 1/2ulp).
- * The rounding mode can be detected by checking whether
- * huge + tiny is equal to huge, and whether huge - tiny is
- * equal to huge for some floating point number "huge" and "tiny".
- *
- * Special cases:
- * sqrt(+-0) = +-0 ... exact
- * sqrt(inf) = inf
- * sqrt(-ve) = NaN ... with invalid signal
- * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
- */
-
-#include "libm.h"
-
-static const double tiny = 1.0e-300;
-
-double sqrt(double x)
-{
- double z;
- int32_t sign = (int)0x80000000;
- int32_t ix0,s0,q,m,t,i;
- uint32_t r,t1,s1,ix1,q1;
-
- EXTRACT_WORDS(ix0, ix1, x);
-
- /* take care of Inf and NaN */
- if ((ix0&0x7ff00000) == 0x7ff00000) {
- return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
- }
- /* take care of zero */
- if (ix0 <= 0) {
- if (((ix0&~sign)|ix1) == 0)
- return x; /* sqrt(+-0) = +-0 */
- if (ix0 < 0)
- return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
- }
- /* normalize x */
- m = ix0>>20;
- if (m == 0) { /* subnormal x */
- while (ix0 == 0) {
- m -= 21;
- ix0 |= (ix1>>11);
- ix1 <<= 21;
- }
- for (i=0; (ix0&0x00100000) == 0; i++)
- ix0<<=1;
- m -= i - 1;
- ix0 |= ix1>>(32-i);
- ix1 <<= i;
- }
- m -= 1023; /* unbias exponent */
- ix0 = (ix0&0x000fffff)|0x00100000;
- if (m & 1) { /* odd m, double x to make it even */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- }
- m >>= 1; /* m = [m/2] */
-
- /* generate sqrt(x) bit by bit */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
- r = 0x00200000; /* r = moving bit from right to left */
-
- while (r != 0) {
- t = s0 + r;
- if (t <= ix0) {
- s0 = t + r;
- ix0 -= t;
- q += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r >>= 1;
- }
-
- r = sign;
- while (r != 0) {
- t1 = s1 + r;
- t = s0;
- if (t < ix0 || (t == ix0 && t1 <= ix1)) {
- s1 = t1 + r;
- if ((t1&sign) == sign && (s1&sign) == 0)
- s0++;
- ix0 -= t;
- if (ix1 < t1)
- ix0--;
- ix1 -= t1;
- q1 += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r >>= 1;
- }
-
- /* use floating add to find out rounding direction */
- if ((ix0|ix1) != 0) {
- z = 1.0 - tiny; /* raise inexact flag */
- if (z >= 1.0) {
- z = 1.0 + tiny;
- if (q1 == (uint32_t)0xffffffff) {
- q1 = 0;
- q++;
- } else if (z > 1.0) {
- if (q1 == (uint32_t)0xfffffffe)
- q++;
- q1 += 2;
- } else
- q1 += q1 & 1;
- }
- }
- ix0 = (q>>1) + 0x3fe00000;
- ix1 = q1>>1;
- if (q&1)
- ix1 |= sign;
- ix0 += m << 20;
- INSERT_WORDS(z, ix0, ix1);
- return z;
-}