diff options
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/logl.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/logl.c | 175 |
1 files changed, 0 insertions, 175 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logl.c b/lib/mlibc/options/ansi/musl-generic-math/logl.c deleted file mode 100644 index 5d53659..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/logl.c +++ /dev/null @@ -1,175 +0,0 @@ -/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */ -/* - * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ -/* - * Natural logarithm, long double precision - * - * - * SYNOPSIS: - * - * long double x, y, logl(); - * - * y = logl( x ); - * - * - * DESCRIPTION: - * - * Returns the base e (2.718...) logarithm of x. - * - * The argument is separated into its exponent and fractional - * parts. If the exponent is between -1 and +1, the logarithm - * of the fraction is approximated by - * - * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). - * - * Otherwise, setting z = 2(x-1)/(x+1), - * - * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20 - * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20 - * - * In the tests over the interval exp(+-10000), the logarithms - * of the random arguments were uniformly distributed over - * [-10000, +10000]. - */ - -#include "libm.h" - -#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 -long double logl(long double x) -{ - return log(x); -} -#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 -/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 2.32e-20 - */ -static const long double P[] = { - 4.5270000862445199635215E-5L, - 4.9854102823193375972212E-1L, - 6.5787325942061044846969E0L, - 2.9911919328553073277375E1L, - 6.0949667980987787057556E1L, - 5.7112963590585538103336E1L, - 2.0039553499201281259648E1L, -}; -static const long double Q[] = { -/* 1.0000000000000000000000E0,*/ - 1.5062909083469192043167E1L, - 8.3047565967967209469434E1L, - 2.2176239823732856465394E2L, - 3.0909872225312059774938E2L, - 2.1642788614495947685003E2L, - 6.0118660497603843919306E1L, -}; - -/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), - * where z = 2(x-1)/(x+1) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 6.16e-22 - */ -static const long double R[4] = { - 1.9757429581415468984296E-3L, --7.1990767473014147232598E-1L, - 1.0777257190312272158094E1L, --3.5717684488096787370998E1L, -}; -static const long double S[4] = { -/* 1.00000000000000000000E0L,*/ --2.6201045551331104417768E1L, - 1.9361891836232102174846E2L, --4.2861221385716144629696E2L, -}; -static const long double C1 = 6.9314575195312500000000E-1L; -static const long double C2 = 1.4286068203094172321215E-6L; - -#define SQRTH 0.70710678118654752440L - -long double logl(long double x) -{ - long double y, z; - int e; - - if (isnan(x)) - return x; - if (x == INFINITY) - return x; - if (x <= 0.0) { - if (x == 0.0) - return -1/(x*x); /* -inf with divbyzero */ - return 0/0.0f; /* nan with invalid */ - } - - /* separate mantissa from exponent */ - /* Note, frexp is used so that denormal numbers - * will be handled properly. - */ - x = frexpl(x, &e); - - /* logarithm using log(x) = z + z**3 P(z)/Q(z), - * where z = 2(x-1)/(x+1) - */ - if (e > 2 || e < -2) { - if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ - e -= 1; - z = x - 0.5; - y = 0.5 * z + 0.5; - } else { /* 2 (x-1)/(x+1) */ - z = x - 0.5; - z -= 0.5; - y = 0.5 * x + 0.5; - } - x = z / y; - z = x*x; - z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); - z = z + e * C2; - z = z + x; - z = z + e * C1; - return z; - } - - /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ - if (x < SQRTH) { - e -= 1; - x = 2.0*x - 1.0; - } else { - x = x - 1.0; - } - z = x*x; - y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); - y = y + e * C2; - z = y - 0.5*z; - /* Note, the sum of above terms does not exceed x/4, - * so it contributes at most about 1/4 lsb to the error. - */ - z = z + x; - z = z + e * C1; /* This sum has an error of 1/2 lsb. */ - return z; -} -#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 -// TODO: broken implementation to make things compile -long double logl(long double x) -{ - return log(x); -} -#endif |