aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/logl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/logl.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/logl.c175
1 files changed, 0 insertions, 175 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logl.c b/lib/mlibc/options/ansi/musl-generic-math/logl.c
deleted file mode 100644
index 5d53659..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/logl.c
+++ /dev/null
@@ -1,175 +0,0 @@
-/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */
-/*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-/*
- * Natural logarithm, long double precision
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, logl();
- *
- * y = logl( x );
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/(x+1),
- *
- * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
- * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
- *
- * In the tests over the interval exp(+-10000), the logarithms
- * of the random arguments were uniformly distributed over
- * [-10000, +10000].
- */
-
-#include "libm.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double logl(long double x)
-{
- return log(x);
-}
-#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 2.32e-20
- */
-static const long double P[] = {
- 4.5270000862445199635215E-5L,
- 4.9854102823193375972212E-1L,
- 6.5787325942061044846969E0L,
- 2.9911919328553073277375E1L,
- 6.0949667980987787057556E1L,
- 5.7112963590585538103336E1L,
- 2.0039553499201281259648E1L,
-};
-static const long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 1.5062909083469192043167E1L,
- 8.3047565967967209469434E1L,
- 2.2176239823732856465394E2L,
- 3.0909872225312059774938E2L,
- 2.1642788614495947685003E2L,
- 6.0118660497603843919306E1L,
-};
-
-/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.16e-22
- */
-static const long double R[4] = {
- 1.9757429581415468984296E-3L,
--7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
--3.5717684488096787370998E1L,
-};
-static const long double S[4] = {
-/* 1.00000000000000000000E0L,*/
--2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
--4.2861221385716144629696E2L,
-};
-static const long double C1 = 6.9314575195312500000000E-1L;
-static const long double C2 = 1.4286068203094172321215E-6L;
-
-#define SQRTH 0.70710678118654752440L
-
-long double logl(long double x)
-{
- long double y, z;
- int e;
-
- if (isnan(x))
- return x;
- if (x == INFINITY)
- return x;
- if (x <= 0.0) {
- if (x == 0.0)
- return -1/(x*x); /* -inf with divbyzero */
- return 0/0.0f; /* nan with invalid */
- }
-
- /* separate mantissa from exponent */
- /* Note, frexp is used so that denormal numbers
- * will be handled properly.
- */
- x = frexpl(x, &e);
-
- /* logarithm using log(x) = z + z**3 P(z)/Q(z),
- * where z = 2(x-1)/(x+1)
- */
- if (e > 2 || e < -2) {
- if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
- e -= 1;
- z = x - 0.5;
- y = 0.5 * z + 0.5;
- } else { /* 2 (x-1)/(x+1) */
- z = x - 0.5;
- z -= 0.5;
- y = 0.5 * x + 0.5;
- }
- x = z / y;
- z = x*x;
- z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
- z = z + e * C2;
- z = z + x;
- z = z + e * C1;
- return z;
- }
-
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
- if (x < SQRTH) {
- e -= 1;
- x = 2.0*x - 1.0;
- } else {
- x = x - 1.0;
- }
- z = x*x;
- y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
- y = y + e * C2;
- z = y - 0.5*z;
- /* Note, the sum of above terms does not exceed x/4,
- * so it contributes at most about 1/4 lsb to the error.
- */
- z = z + x;
- z = z + e * C1; /* This sum has an error of 1/2 lsb. */
- return z;
-}
-#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-// TODO: broken implementation to make things compile
-long double logl(long double x)
-{
- return log(x);
-}
-#endif