summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/log1p.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/log1p.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log1p.c122
1 files changed, 0 insertions, 122 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log1p.c b/lib/mlibc/options/ansi/musl-generic-math/log1p.c
deleted file mode 100644
index 0097134..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/log1p.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* double log1p(double x)
- * Return the natural logarithm of 1+x.
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * 1+x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * Note. If k=0, then f=x is exact. However, if k!=0, then f
- * may not be representable exactly. In that case, a correction
- * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
- * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
- * and add back the correction term c/u.
- * (Note: when x > 2**53, one can simply return log(x))
- *
- * 2. Approximation of log(1+f): See log.c
- *
- * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
- *
- * Special cases:
- * log1p(x) is NaN with signal if x < -1 (including -INF) ;
- * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
- * log1p(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- *
- * Note: Assuming log() return accurate answer, the following
- * algorithm can be used to compute log1p(x) to within a few ULP:
- *
- * u = 1+x;
- * if(u==1.0) return x ; else
- * return log(u)*(x/(u-1.0));
- *
- * See HP-15C Advanced Functions Handbook, p.193.
- */
-
-#include "libm.h"
-
-static const double
-ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
-ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
-Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
-
-double log1p(double x)
-{
- union {double f; uint64_t i;} u = {x};
- double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
- uint32_t hx,hu;
- int k;
-
- hx = u.i>>32;
- k = 1;
- if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
- if (hx >= 0xbff00000) { /* x <= -1.0 */
- if (x == -1)
- return x/0.0; /* log1p(-1) = -inf */
- return (x-x)/0.0; /* log1p(x<-1) = NaN */
- }
- if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
- /* underflow if subnormal */
- if ((hx&0x7ff00000) == 0)
- FORCE_EVAL((float)x);
- return x;
- }
- if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
- k = 0;
- c = 0;
- f = x;
- }
- } else if (hx >= 0x7ff00000)
- return x;
- if (k) {
- u.f = 1 + x;
- hu = u.i>>32;
- hu += 0x3ff00000 - 0x3fe6a09e;
- k = (int)(hu>>20) - 0x3ff;
- /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
- if (k < 54) {
- c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
- c /= u.f;
- } else
- c = 0;
- /* reduce u into [sqrt(2)/2, sqrt(2)] */
- hu = (hu&0x000fffff) + 0x3fe6a09e;
- u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
- f = u.f - 1;
- }
- hfsq = 0.5*f*f;
- s = f/(2.0+f);
- z = s*s;
- w = z*z;
- t1 = w*(Lg2+w*(Lg4+w*Lg6));
- t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
- R = t2 + t1;
- dk = k;
- return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
-}