aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/log.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/log.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log.c118
1 files changed, 118 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log.c b/lib/mlibc/options/ansi/musl-generic-math/log.c
new file mode 100644
index 0000000..e61e113
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log.c
@@ -0,0 +1,118 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Remez algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const double
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,s,z,R,w,t1,t2,dk;
+ uint32_t hx;
+ int k;
+
+ hx = u.i>>32;
+ k = 0;
+ if (hx < 0x00100000 || hx>>31) {
+ if (u.i<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (hx>>31)
+ return (x-x)/0.0; /* log(-#) = NaN */
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= 0x1p54;
+ u.f = x;
+ hx = u.i>>32;
+ } else if (hx >= 0x7ff00000) {
+ return x;
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (int)(hx>>20) - 0x3ff;
+ hx = (hx&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+ x = u.f;
+
+ f = x - 1.0;
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+ dk = k;
+ return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+}