aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/lgammal.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/lgammal.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/lgammal.c361
1 files changed, 0 insertions, 361 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/lgammal.c b/lib/mlibc/options/ansi/musl-generic-math/lgammal.c
deleted file mode 100644
index f0bea36..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/lgammal.c
+++ /dev/null
@@ -1,361 +0,0 @@
-/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-/* lgammal(x)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method:
- * 1. Argument Reduction for 0 < x <= 8
- * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
- * reduce x to a number in [1.5,2.5] by
- * lgamma(1+s) = log(s) + lgamma(s)
- * for example,
- * lgamma(7.3) = log(6.3) + lgamma(6.3)
- * = log(6.3*5.3) + lgamma(5.3)
- * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
- * 2. Polynomial approximation of lgamma around its
- * minimun ymin=1.461632144968362245 to maintain monotonicity.
- * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
- * Let z = x-ymin;
- * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
- * 2. Rational approximation in the primary interval [2,3]
- * We use the following approximation:
- * s = x-2.0;
- * lgamma(x) = 0.5*s + s*P(s)/Q(s)
- * Our algorithms are based on the following observation
- *
- * zeta(2)-1 2 zeta(3)-1 3
- * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
- * 2 3
- *
- * where Euler = 0.5771... is the Euler constant, which is very
- * close to 0.5.
- *
- * 3. For x>=8, we have
- * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
- * (better formula:
- * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
- * Let z = 1/x, then we approximation
- * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
- * by
- * 3 5 11
- * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
- *
- * 4. For negative x, since (G is gamma function)
- * -x*G(-x)*G(x) = pi/sin(pi*x),
- * we have
- * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
- * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
- * Hence, for x<0, signgam = sign(sin(pi*x)) and
- * lgamma(x) = log(|Gamma(x)|)
- * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
- * Note: one should avoid compute pi*(-x) directly in the
- * computation of sin(pi*(-x)).
- *
- * 5. Special Cases
- * lgamma(2+s) ~ s*(1-Euler) for tiny s
- * lgamma(1)=lgamma(2)=0
- * lgamma(x) ~ -log(x) for tiny x
- * lgamma(0) = lgamma(inf) = inf
- * lgamma(-integer) = +-inf
- *
- */
-
-#define _GNU_SOURCE
-#include "libm.h"
-#include "weak_alias.h"
-//#include "libc.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-double __lgamma_r(double x, int *sg);
-
-long double __lgammal_r(long double x, int *sg)
-{
- return __lgamma_r(x, sg);
-}
-#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-static const long double
-pi = 3.14159265358979323846264L,
-
-/* lgam(1+x) = 0.5 x + x a(x)/b(x)
- -0.268402099609375 <= x <= 0
- peak relative error 6.6e-22 */
-a0 = -6.343246574721079391729402781192128239938E2L,
-a1 = 1.856560238672465796768677717168371401378E3L,
-a2 = 2.404733102163746263689288466865843408429E3L,
-a3 = 8.804188795790383497379532868917517596322E2L,
-a4 = 1.135361354097447729740103745999661157426E2L,
-a5 = 3.766956539107615557608581581190400021285E0L,
-
-b0 = 8.214973713960928795704317259806842490498E3L,
-b1 = 1.026343508841367384879065363925870888012E4L,
-b2 = 4.553337477045763320522762343132210919277E3L,
-b3 = 8.506975785032585797446253359230031874803E2L,
-b4 = 6.042447899703295436820744186992189445813E1L,
-/* b5 = 1.000000000000000000000000000000000000000E0 */
-
-
-tc = 1.4616321449683623412626595423257213284682E0L,
-tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
-/* tt = (tail of tf), i.e. tf + tt has extended precision. */
-tt = 3.3649914684731379602768989080467587736363E-18L,
-/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
--1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
-
-/* lgam (x + tc) = tf + tt + x g(x)/h(x)
- -0.230003726999612341262659542325721328468 <= x
- <= 0.2699962730003876587373404576742786715318
- peak relative error 2.1e-21 */
-g0 = 3.645529916721223331888305293534095553827E-18L,
-g1 = 5.126654642791082497002594216163574795690E3L,
-g2 = 8.828603575854624811911631336122070070327E3L,
-g3 = 5.464186426932117031234820886525701595203E3L,
-g4 = 1.455427403530884193180776558102868592293E3L,
-g5 = 1.541735456969245924860307497029155838446E2L,
-g6 = 4.335498275274822298341872707453445815118E0L,
-
-h0 = 1.059584930106085509696730443974495979641E4L,
-h1 = 2.147921653490043010629481226937850618860E4L,
-h2 = 1.643014770044524804175197151958100656728E4L,
-h3 = 5.869021995186925517228323497501767586078E3L,
-h4 = 9.764244777714344488787381271643502742293E2L,
-h5 = 6.442485441570592541741092969581997002349E1L,
-/* h6 = 1.000000000000000000000000000000000000000E0 */
-
-
-/* lgam (x+1) = -0.5 x + x u(x)/v(x)
- -0.100006103515625 <= x <= 0.231639862060546875
- peak relative error 1.3e-21 */
-u0 = -8.886217500092090678492242071879342025627E1L,
-u1 = 6.840109978129177639438792958320783599310E2L,
-u2 = 2.042626104514127267855588786511809932433E3L,
-u3 = 1.911723903442667422201651063009856064275E3L,
-u4 = 7.447065275665887457628865263491667767695E2L,
-u5 = 1.132256494121790736268471016493103952637E2L,
-u6 = 4.484398885516614191003094714505960972894E0L,
-
-v0 = 1.150830924194461522996462401210374632929E3L,
-v1 = 3.399692260848747447377972081399737098610E3L,
-v2 = 3.786631705644460255229513563657226008015E3L,
-v3 = 1.966450123004478374557778781564114347876E3L,
-v4 = 4.741359068914069299837355438370682773122E2L,
-v5 = 4.508989649747184050907206782117647852364E1L,
-/* v6 = 1.000000000000000000000000000000000000000E0 */
-
-
-/* lgam (x+2) = .5 x + x s(x)/r(x)
- 0 <= x <= 1
- peak relative error 7.2e-22 */
-s0 = 1.454726263410661942989109455292824853344E6L,
-s1 = -3.901428390086348447890408306153378922752E6L,
-s2 = -6.573568698209374121847873064292963089438E6L,
-s3 = -3.319055881485044417245964508099095984643E6L,
-s4 = -7.094891568758439227560184618114707107977E5L,
-s5 = -6.263426646464505837422314539808112478303E4L,
-s6 = -1.684926520999477529949915657519454051529E3L,
-
-r0 = -1.883978160734303518163008696712983134698E7L,
-r1 = -2.815206082812062064902202753264922306830E7L,
-r2 = -1.600245495251915899081846093343626358398E7L,
-r3 = -4.310526301881305003489257052083370058799E6L,
-r4 = -5.563807682263923279438235987186184968542E5L,
-r5 = -3.027734654434169996032905158145259713083E4L,
-r6 = -4.501995652861105629217250715790764371267E2L,
-/* r6 = 1.000000000000000000000000000000000000000E0 */
-
-
-/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
- x >= 8
- Peak relative error 1.51e-21
-w0 = LS2PI - 0.5 */
-w0 = 4.189385332046727417803e-1L,
-w1 = 8.333333333333331447505E-2L,
-w2 = -2.777777777750349603440E-3L,
-w3 = 7.936507795855070755671E-4L,
-w4 = -5.952345851765688514613E-4L,
-w5 = 8.412723297322498080632E-4L,
-w6 = -1.880801938119376907179E-3L,
-w7 = 4.885026142432270781165E-3L;
-
-/* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
-static long double sin_pi(long double x)
-{
- int n;
-
- /* spurious inexact if odd int */
- x *= 0.5;
- x = 2.0*(x - floorl(x)); /* x mod 2.0 */
-
- n = (int)(x*4.0);
- n = (n+1)/2;
- x -= n*0.5f;
- x *= pi;
-
- switch (n) {
- default: /* case 4: */
- case 0: return __sinl(x, 0.0, 0);
- case 1: return __cosl(x, 0.0);
- case 2: return __sinl(-x, 0.0, 0);
- case 3: return -__cosl(x, 0.0);
- }
-}
-
-long double __lgammal_r(long double x, int *sg) {
- long double t, y, z, nadj, p, p1, p2, q, r, w;
- union ldshape u = {x};
- uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
- int sign = u.i.se >> 15;
- int i;
-
- *sg = 1;
-
- /* purge off +-inf, NaN, +-0, tiny and negative arguments */
- if (ix >= 0x7fff0000)
- return x * x;
- if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
- if (sign) {
- *sg = -1;
- x = -x;
- }
- return -logl(x);
- }
- if (sign) {
- x = -x;
- t = sin_pi(x);
- if (t == 0.0)
- return 1.0 / (x-x); /* -integer */
- if (t > 0.0)
- *sg = -1;
- else
- t = -t;
- nadj = logl(pi / (t * x));
- }
-
- /* purge off 1 and 2 (so the sign is ok with downward rounding) */
- if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
- r = 0;
- } else if (ix < 0x40008000) { /* x < 2.0 */
- if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */
- /* lgamma(x) = lgamma(x+1) - log(x) */
- r = -logl(x);
- if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
- y = x - 1.0;
- i = 0;
- } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
- y = x - (tc - 1.0);
- i = 1;
- } else { /* x < 0.23 */
- y = x;
- i = 2;
- }
- } else {
- r = 0.0;
- if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
- /* [1.7316,2] */
- y = x - 2.0;
- i = 0;
- } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
- /* [1.23,1.73] */
- y = x - tc;
- i = 1;
- } else {
- /* [0.9, 1.23] */
- y = x - 1.0;
- i = 2;
- }
- }
- switch (i) {
- case 0:
- p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
- p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
- r += 0.5 * y + y * p1/p2;
- break;
- case 1:
- p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
- p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
- p = tt + y * p1/p2;
- r += (tf + p);
- break;
- case 2:
- p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
- p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
- r += (-0.5 * y + p1 / p2);
- }
- } else if (ix < 0x40028000) { /* 8.0 */
- /* x < 8.0 */
- i = (int)x;
- y = x - (double)i;
- p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
- q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
- r = 0.5 * y + p / q;
- z = 1.0;
- /* lgamma(1+s) = log(s) + lgamma(s) */
- switch (i) {
- case 7:
- z *= (y + 6.0); /* FALLTHRU */
- case 6:
- z *= (y + 5.0); /* FALLTHRU */
- case 5:
- z *= (y + 4.0); /* FALLTHRU */
- case 4:
- z *= (y + 3.0); /* FALLTHRU */
- case 3:
- z *= (y + 2.0); /* FALLTHRU */
- r += logl(z);
- break;
- }
- } else if (ix < 0x40418000) { /* 2^66 */
- /* 8.0 <= x < 2**66 */
- t = logl(x);
- z = 1.0 / x;
- y = z * z;
- w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
- r = (x - 0.5) * (t - 1.0) + w;
- } else /* 2**66 <= x <= inf */
- r = x * (logl(x) - 1.0);
- if (sign)
- r = nadj - r;
- return r;
-}
-#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-// TODO: broken implementation to make things compile
-double __lgamma_r(double x, int *sg);
-
-long double __lgammal_r(long double x, int *sg)
-{
- return __lgamma_r(x, sg);
-}
-#endif
-
-extern int __signgam;
-
-long double lgammal(long double x)
-{
- return __lgammal_r(x, &__signgam);
-}
-
-weak_alias(__lgammal_r, lgammal_r);