aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/jnf.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/jnf.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/jnf.c202
1 files changed, 0 insertions, 202 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/jnf.c b/lib/mlibc/options/ansi/musl-generic-math/jnf.c
deleted file mode 100644
index f63c062..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/jnf.c
+++ /dev/null
@@ -1,202 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
-/*
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#define _GNU_SOURCE
-#include "libm.h"
-
-float jnf(int n, float x)
-{
- uint32_t ix;
- int nm1, sign, i;
- float a, b, temp;
-
- GET_FLOAT_WORD(ix, x);
- sign = ix>>31;
- ix &= 0x7fffffff;
- if (ix > 0x7f800000) /* nan */
- return x;
-
- /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
- if (n == 0)
- return j0f(x);
- if (n < 0) {
- nm1 = -(n+1);
- x = -x;
- sign ^= 1;
- } else
- nm1 = n-1;
- if (nm1 == 0)
- return j1f(x);
-
- sign &= n; /* even n: 0, odd n: signbit(x) */
- x = fabsf(x);
- if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
- b = 0.0f;
- else if (nm1 < x) {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- a = j0f(x);
- b = j1f(x);
- for (i=0; i<nm1; ){
- i++;
- temp = b;
- b = b*(2.0f*i/x) - a;
- a = temp;
- }
- } else {
- if (ix < 0x35800000) { /* x < 2**-20 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (nm1 > 8) /* underflow */
- nm1 = 8;
- temp = 0.5f * x;
- b = temp;
- a = 1.0f;
- for (i=2; i<=nm1+1; i++) {
- a *= (float)i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b/a;
- } else {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- float t,q0,q1,w,h,z,tmp,nf;
- int k;
-
- nf = nm1+1.0f;
- w = 2*nf/x;
- h = 2/x;
- z = w+h;
- q0 = w;
- q1 = w*z - 1.0f;
- k = 1;
- while (q1 < 1.0e4f) {
- k += 1;
- z += h;
- tmp = z*q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- for (t=0.0f, i=k; i>=0; i--)
- t = 1.0f/(2*(i+nf)/x-t);
- a = t;
- b = 1.0f;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = nf*logf(fabsf(w));
- if (tmp < 88.721679688f) {
- for (i=nm1; i>0; i--) {
- temp = b;
- b = 2.0f*i*b/x - a;
- a = temp;
- }
- } else {
- for (i=nm1; i>0; i--){
- temp = b;
- b = 2.0f*i*b/x - a;
- a = temp;
- /* scale b to avoid spurious overflow */
- if (b > 0x1p60f) {
- a /= b;
- t /= b;
- b = 1.0f;
- }
- }
- }
- z = j0f(x);
- w = j1f(x);
- if (fabsf(z) >= fabsf(w))
- b = t*z/b;
- else
- b = t*w/a;
- }
- }
- return sign ? -b : b;
-}
-
-float ynf(int n, float x)
-{
- uint32_t ix, ib;
- int nm1, sign, i;
- float a, b, temp;
-
- GET_FLOAT_WORD(ix, x);
- sign = ix>>31;
- ix &= 0x7fffffff;
- if (ix > 0x7f800000) /* nan */
- return x;
- if (sign && ix != 0) /* x < 0 */
- return 0/0.0f;
- if (ix == 0x7f800000)
- return 0.0f;
-
- if (n == 0)
- return y0f(x);
- if (n < 0) {
- nm1 = -(n+1);
- sign = n&1;
- } else {
- nm1 = n-1;
- sign = 0;
- }
- if (nm1 == 0)
- return sign ? -y1f(x) : y1f(x);
-
- a = y0f(x);
- b = y1f(x);
- /* quit if b is -inf */
- GET_FLOAT_WORD(ib,b);
- for (i = 0; i < nm1 && ib != 0xff800000; ) {
- i++;
- temp = b;
- b = (2.0f*i/x)*b - a;
- GET_FLOAT_WORD(ib, b);
- a = temp;
- }
- return sign ? -b : b;
-}