diff options
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/expm1.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/expm1.c | 201 |
1 files changed, 0 insertions, 201 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1.c b/lib/mlibc/options/ansi/musl-generic-math/expm1.c deleted file mode 100644 index ac1e61e..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/expm1.c +++ /dev/null @@ -1,201 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* expm1(x) - * Returns exp(x)-1, the exponential of x minus 1. - * - * Method - * 1. Argument reduction: - * Given x, find r and integer k such that - * - * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 - * - * Here a correction term c will be computed to compensate - * the error in r when rounded to a floating-point number. - * - * 2. Approximating expm1(r) by a special rational function on - * the interval [0,0.34658]: - * Since - * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... - * we define R1(r*r) by - * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) - * That is, - * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) - * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) - * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... - * We use a special Remez algorithm on [0,0.347] to generate - * a polynomial of degree 5 in r*r to approximate R1. The - * maximum error of this polynomial approximation is bounded - * by 2**-61. In other words, - * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 - * where Q1 = -1.6666666666666567384E-2, - * Q2 = 3.9682539681370365873E-4, - * Q3 = -9.9206344733435987357E-6, - * Q4 = 2.5051361420808517002E-7, - * Q5 = -6.2843505682382617102E-9; - * z = r*r, - * with error bounded by - * | 5 | -61 - * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 - * | | - * - * expm1(r) = exp(r)-1 is then computed by the following - * specific way which minimize the accumulation rounding error: - * 2 3 - * r r [ 3 - (R1 + R1*r/2) ] - * expm1(r) = r + --- + --- * [--------------------] - * 2 2 [ 6 - r*(3 - R1*r/2) ] - * - * To compensate the error in the argument reduction, we use - * expm1(r+c) = expm1(r) + c + expm1(r)*c - * ~ expm1(r) + c + r*c - * Thus c+r*c will be added in as the correction terms for - * expm1(r+c). Now rearrange the term to avoid optimization - * screw up: - * ( 2 2 ) - * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) - * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) - * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) - * ( ) - * - * = r - E - * 3. Scale back to obtain expm1(x): - * From step 1, we have - * expm1(x) = either 2^k*[expm1(r)+1] - 1 - * = or 2^k*[expm1(r) + (1-2^-k)] - * 4. Implementation notes: - * (A). To save one multiplication, we scale the coefficient Qi - * to Qi*2^i, and replace z by (x^2)/2. - * (B). To achieve maximum accuracy, we compute expm1(x) by - * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) - * (ii) if k=0, return r-E - * (iii) if k=-1, return 0.5*(r-E)-0.5 - * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) - * else return 1.0+2.0*(r-E); - * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) - * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else - * (vii) return 2^k(1-((E+2^-k)-r)) - * - * Special cases: - * expm1(INF) is INF, expm1(NaN) is NaN; - * expm1(-INF) is -1, and - * for finite argument, only expm1(0)=0 is exact. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Misc. info. - * For IEEE double - * if x > 7.09782712893383973096e+02 then expm1(x) overflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "libm.h" - -static const double -o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ -/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ -Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ -Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ -Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ -Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ -Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ - -double expm1(double x) -{ - double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk; - union {double f; uint64_t i;} u = {x}; - uint32_t hx = u.i>>32 & 0x7fffffff; - int k, sign = u.i>>63; - - /* filter out huge and non-finite argument */ - if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ - if (isnan(x)) - return x; - if (sign) - return -1; - if (x > o_threshold) { - x *= 0x1p1023; - return x; - } - } - - /* argument reduction */ - if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ - if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ - if (!sign) { - hi = x - ln2_hi; - lo = ln2_lo; - k = 1; - } else { - hi = x + ln2_hi; - lo = -ln2_lo; - k = -1; - } - } else { - k = invln2*x + (sign ? -0.5 : 0.5); - t = k; - hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ - lo = t*ln2_lo; - } - x = hi-lo; - c = (hi-x)-lo; - } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */ - if (hx < 0x00100000) - FORCE_EVAL((float)x); - return x; - } else - k = 0; - - /* x is now in primary range */ - hfx = 0.5*x; - hxs = x*hfx; - r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); - t = 3.0-r1*hfx; - e = hxs*((r1-t)/(6.0 - x*t)); - if (k == 0) /* c is 0 */ - return x - (x*e-hxs); - e = x*(e-c) - c; - e -= hxs; - /* exp(x) ~ 2^k (x_reduced - e + 1) */ - if (k == -1) - return 0.5*(x-e) - 0.5; - if (k == 1) { - if (x < -0.25) - return -2.0*(e-(x+0.5)); - return 1.0+2.0*(x-e); - } - u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */ - twopk = u.f; - if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */ - y = x - e + 1.0; - if (k == 1024) - y = y*2.0*0x1p1023; - else - y = y*twopk; - return y - 1.0; - } - u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */ - if (k < 20) - y = (x-e+(1-u.f))*twopk; - else - y = (x-(e+u.f)+1)*twopk; - return y; -} |