aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/expl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/expl.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expl.c128
1 files changed, 0 insertions, 128 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expl.c b/lib/mlibc/options/ansi/musl-generic-math/expl.c
deleted file mode 100644
index 0a7f44f..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/expl.c
+++ /dev/null
@@ -1,128 +0,0 @@
-/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
-/*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-/*
- * Exponential function, long double precision
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, expl();
- *
- * y = expl( x );
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A Pade' form of degree 5/6 is used to approximate exp(f) - 1
- * in the basic range [-0.5 ln 2, 0.5 ln 2].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-10000 50000 1.12e-19 2.81e-20
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a long double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < MINLOG 0.0
- * exp overflow x > MAXLOG MAXNUM
- *
- */
-
-#include "libm.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double expl(long double x)
-{
- return exp(x);
-}
-#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-
-static const long double P[3] = {
- 1.2617719307481059087798E-4L,
- 3.0299440770744196129956E-2L,
- 9.9999999999999999991025E-1L,
-};
-static const long double Q[4] = {
- 3.0019850513866445504159E-6L,
- 2.5244834034968410419224E-3L,
- 2.2726554820815502876593E-1L,
- 2.0000000000000000000897E0L,
-};
-static const long double
-LN2HI = 6.9314575195312500000000E-1L,
-LN2LO = 1.4286068203094172321215E-6L,
-LOG2E = 1.4426950408889634073599E0L;
-
-long double expl(long double x)
-{
- long double px, xx;
- int k;
-
- if (isnan(x))
- return x;
- if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
- return x * 0x1p16383L;
- if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
- return -0x1p-16445L/x;
-
- /* Express e**x = e**f 2**k
- * = e**(f + k ln(2))
- */
- px = floorl(LOG2E * x + 0.5);
- k = px;
- x -= px * LN2HI;
- x -= px * LN2LO;
-
- /* rational approximation of the fractional part:
- * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
- */
- xx = x * x;
- px = x * __polevll(xx, P, 2);
- x = px/(__polevll(xx, Q, 3) - px);
- x = 1.0 + 2.0 * x;
- return scalbnl(x, k);
-}
-#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-// TODO: broken implementation to make things compile
-long double expl(long double x)
-{
- return exp(x);
-}
-#endif