aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/exp.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/exp.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp.c134
1 files changed, 0 insertions, 134 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp.c b/lib/mlibc/options/ansi/musl-generic-math/exp.c
deleted file mode 100644
index 9ea672f..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/exp.c
+++ /dev/null
@@ -1,134 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
-/*
- * ====================================================
- * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
- *
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* exp(x)
- * Returns the exponential of x.
- *
- * Method
- * 1. Argument reduction:
- * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
- * Given x, find r and integer k such that
- *
- * x = k*ln2 + r, |r| <= 0.5*ln2.
- *
- * Here r will be represented as r = hi-lo for better
- * accuracy.
- *
- * 2. Approximation of exp(r) by a special rational function on
- * the interval [0,0.34658]:
- * Write
- * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- * We use a special Remez algorithm on [0,0.34658] to generate
- * a polynomial of degree 5 to approximate R. The maximum error
- * of this polynomial approximation is bounded by 2**-59. In
- * other words,
- * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
- * (where z=r*r, and the values of P1 to P5 are listed below)
- * and
- * | 5 | -59
- * | 2.0+P1*z+...+P5*z - R(z) | <= 2
- * | |
- * The computation of exp(r) thus becomes
- * 2*r
- * exp(r) = 1 + ----------
- * R(r) - r
- * r*c(r)
- * = 1 + r + ----------- (for better accuracy)
- * 2 - c(r)
- * where
- * 2 4 10
- * c(r) = r - (P1*r + P2*r + ... + P5*r ).
- *
- * 3. Scale back to obtain exp(x):
- * From step 1, we have
- * exp(x) = 2^k * exp(r)
- *
- * Special cases:
- * exp(INF) is INF, exp(NaN) is NaN;
- * exp(-INF) is 0, and
- * for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Misc. info.
- * For IEEE double
- * if x > 709.782712893383973096 then exp(x) overflows
- * if x < -745.133219101941108420 then exp(x) underflows
- */
-
-#include "libm.h"
-
-static const double
-half[2] = {0.5,-0.5},
-ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
-
-double exp(double x)
-{
- double_t hi, lo, c, xx, y;
- int k, sign;
- uint32_t hx;
-
- GET_HIGH_WORD(hx, x);
- sign = hx>>31;
- hx &= 0x7fffffff; /* high word of |x| */
-
- /* special cases */
- if (hx >= 0x4086232b) { /* if |x| >= 708.39... */
- if (isnan(x))
- return x;
- if (x > 709.782712893383973096) {
- /* overflow if x!=inf */
- x *= 0x1p1023;
- return x;
- }
- if (x < -708.39641853226410622) {
- /* underflow if x!=-inf */
- FORCE_EVAL((float)(-0x1p-149/x));
- if (x < -745.13321910194110842)
- return 0;
- }
- }
-
- /* argument reduction */
- if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
- if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
- k = (int)(invln2*x + half[sign]);
- else
- k = 1 - sign - sign;
- hi = x - k*ln2hi; /* k*ln2hi is exact here */
- lo = k*ln2lo;
- x = hi - lo;
- } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
- k = 0;
- hi = x;
- lo = 0;
- } else {
- /* inexact if x!=0 */
- FORCE_EVAL(0x1p1023 + x);
- return 1 + x;
- }
-
- /* x is now in primary range */
- xx = x*x;
- c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
- y = 1 + (x*c/(2-c) - lo + hi);
- if (k == 0)
- return y;
- return scalbn(y, k);
-}