summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/exp.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/exp.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/exp.c134
1 files changed, 134 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/exp.c b/lib/mlibc/options/ansi/musl-generic-math/exp.c
new file mode 100644
index 0000000..9ea672f
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/exp.c
@@ -0,0 +1,134 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remez algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + ----------
+ * R(r) - r
+ * r*c(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - c(r)
+ * where
+ * 2 4 10
+ * c(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 709.782712893383973096 then exp(x) overflows
+ * if x < -745.133219101941108420 then exp(x) underflows
+ */
+
+#include "libm.h"
+
+static const double
+half[2] = {0.5,-0.5},
+ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+double exp(double x)
+{
+ double_t hi, lo, c, xx, y;
+ int k, sign;
+ uint32_t hx;
+
+ GET_HIGH_WORD(hx, x);
+ sign = hx>>31;
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if (hx >= 0x4086232b) { /* if |x| >= 708.39... */
+ if (isnan(x))
+ return x;
+ if (x > 709.782712893383973096) {
+ /* overflow if x!=inf */
+ x *= 0x1p1023;
+ return x;
+ }
+ if (x < -708.39641853226410622) {
+ /* underflow if x!=-inf */
+ FORCE_EVAL((float)(-0x1p-149/x));
+ if (x < -745.13321910194110842)
+ return 0;
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
+ k = (int)(invln2*x + half[sign]);
+ else
+ k = 1 - sign - sign;
+ hi = x - k*ln2hi; /* k*ln2hi is exact here */
+ lo = k*ln2lo;
+ x = hi - lo;
+ } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
+ k = 0;
+ hi = x;
+ lo = 0;
+ } else {
+ /* inexact if x!=0 */
+ FORCE_EVAL(0x1p1023 + x);
+ return 1 + x;
+ }
+
+ /* x is now in primary range */
+ xx = x*x;
+ c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
+ y = 1 + (x*c/(2-c) - lo + hi);
+ if (k == 0)
+ return y;
+ return scalbn(y, k);
+}