aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/cbrtf.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/cbrtf.c66
1 files changed, 66 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c
new file mode 100644
index 0000000..89c2c86
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c
@@ -0,0 +1,66 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cbrtf(x)
+ * Return cube root of x
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const unsigned
+B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+
+float cbrtf(float x)
+{
+ double_t r,T;
+ union {float f; uint32_t i;} u = {x};
+ uint32_t hx = u.i & 0x7fffffff;
+
+ if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
+ return x + x;
+
+ /* rough cbrt to 5 bits */
+ if (hx < 0x00800000) { /* zero or subnormal? */
+ if (hx == 0)
+ return x; /* cbrt(+-0) is itself */
+ u.f = x*0x1p24f;
+ hx = u.i & 0x7fffffff;
+ hx = hx/3 + B2;
+ } else
+ hx = hx/3 + B1;
+ u.i &= 0x80000000;
+ u.i |= hx;
+
+ /*
+ * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
+ * double precision so that its terms can be arranged for efficiency
+ * without causing overflow or underflow.
+ */
+ T = u.f;
+ r = T*T*T;
+ T = T*((double_t)x+x+r)/(x+r+r);
+
+ /*
+ * Second step Newton iteration to 47 bits. In double precision for
+ * efficiency and accuracy.
+ */
+ r = T*T*T;
+ T = T*((double_t)x+x+r)/(x+r+r);
+
+ /* rounding to 24 bits is perfect in round-to-nearest mode */
+ return T;
+}