diff options
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/cbrtf.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/cbrtf.c | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c new file mode 100644 index 0000000..89c2c86 --- /dev/null +++ b/lib/mlibc/options/ansi/musl-generic-math/cbrtf.c @@ -0,0 +1,66 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* cbrtf(x) + * Return cube root of x + */ + +#include <math.h> +#include <stdint.h> + +static const unsigned +B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */ +B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ + +float cbrtf(float x) +{ + double_t r,T; + union {float f; uint32_t i;} u = {x}; + uint32_t hx = u.i & 0x7fffffff; + + if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */ + return x + x; + + /* rough cbrt to 5 bits */ + if (hx < 0x00800000) { /* zero or subnormal? */ + if (hx == 0) + return x; /* cbrt(+-0) is itself */ + u.f = x*0x1p24f; + hx = u.i & 0x7fffffff; + hx = hx/3 + B2; + } else + hx = hx/3 + B1; + u.i &= 0x80000000; + u.i |= hx; + + /* + * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In + * double precision so that its terms can be arranged for efficiency + * without causing overflow or underflow. + */ + T = u.f; + r = T*T*T; + T = T*((double_t)x+x+r)/(x+r+r); + + /* + * Second step Newton iteration to 47 bits. In double precision for + * efficiency and accuracy. + */ + r = T*T*T; + T = T*((double_t)x+x+r)/(x+r+r); + + /* rounding to 24 bits is perfect in round-to-nearest mode */ + return T; +} |