diff options
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/atan.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/atan.c | 116 |
1 files changed, 116 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atan.c b/lib/mlibc/options/ansi/musl-generic-math/atan.c new file mode 100644 index 0000000..63b0ab2 --- /dev/null +++ b/lib/mlibc/options/ansi/musl-generic-math/atan.c @@ -0,0 +1,116 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* atan(x) + * Method + * 1. Reduce x to positive by atan(x) = -atan(-x). + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument + * is further reduced to one of the following intervals and the + * arctangent of t is evaluated by the corresponding formula: + * + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + + +#include "libm.h" + +static const double atanhi[] = { + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ +}; + +static const double atanlo[] = { + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ +}; + +static const double aT[] = { + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ +}; + +double atan(double x) +{ + double_t w,s1,s2,z; + uint32_t ix,sign; + int id; + + GET_HIGH_WORD(ix, x); + sign = ix >> 31; + ix &= 0x7fffffff; + if (ix >= 0x44100000) { /* if |x| >= 2^66 */ + if (isnan(x)) + return x; + z = atanhi[3] + 0x1p-120f; + return sign ? -z : z; + } + if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ + if (ix < 0x3e400000) { /* |x| < 2^-27 */ + if (ix < 0x00100000) + /* raise underflow for subnormal x */ + FORCE_EVAL((float)x); + return x; + } + id = -1; + } else { + x = fabs(x); + if (ix < 0x3ff30000) { /* |x| < 1.1875 */ + if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */ + id = 0; + x = (2.0*x-1.0)/(2.0+x); + } else { /* 11/16 <= |x| < 19/16 */ + id = 1; + x = (x-1.0)/(x+1.0); + } + } else { + if (ix < 0x40038000) { /* |x| < 2.4375 */ + id = 2; + x = (x-1.5)/(1.0+1.5*x); + } else { /* 2.4375 <= |x| < 2^66 */ + id = 3; + x = -1.0/x; + } + } + } + /* end of argument reduction */ + z = x*x; + w = z*z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); + s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); + if (id < 0) + return x - x*(s1+s2); + z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x); + return sign ? -z : z; +} |