aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/acosl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/acosl.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/acosl.c67
1 files changed, 0 insertions, 67 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/acosl.c b/lib/mlibc/options/ansi/musl-generic-math/acosl.c
deleted file mode 100644
index c03bdf0..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/acosl.c
+++ /dev/null
@@ -1,67 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * See comments in acos.c.
- * Converted to long double by David Schultz <das@FreeBSD.ORG>.
- */
-
-#include "libm.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double acosl(long double x)
-{
- return acos(x);
-}
-#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-#include "__invtrigl.h"
-#if LDBL_MANT_DIG == 64
-#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
-#elif LDBL_MANT_DIG == 113
-#define CLEARBOTTOM(u) (u.i.lo = 0)
-#endif
-
-long double acosl(long double x)
-{
- union ldshape u = {x};
- long double z, s, c, f;
- uint16_t e = u.i.se & 0x7fff;
-
- /* |x| >= 1 or nan */
- if (e >= 0x3fff) {
- if (x == 1)
- return 0;
- if (x == -1)
- return 2*pio2_hi + 0x1p-120f;
- return 0/(x-x);
- }
- /* |x| < 0.5 */
- if (e < 0x3fff - 1) {
- if (e < 0x3fff - LDBL_MANT_DIG - 1)
- return pio2_hi + 0x1p-120f;
- return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
- }
- /* x < -0.5 */
- if (u.i.se >> 15) {
- z = (1 + x)*0.5;
- s = sqrtl(z);
- return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
- }
- /* x > 0.5 */
- z = (1 - x)*0.5;
- s = sqrtl(z);
- u.f = s;
- CLEARBOTTOM(u);
- f = u.f;
- c = (z - f*f)/(s + f);
- return 2*(__invtrigl_R(z)*s + c + f);
-}
-#endif