aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/__tandf.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/__tandf.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__tandf.c54
1 files changed, 54 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__tandf.c b/lib/mlibc/options/ansi/musl-generic-math/__tandf.c
new file mode 100644
index 0000000..25047ee
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__tandf.c
@@ -0,0 +1,54 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
+static const double T[] = {
+ 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
+ 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
+ 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
+ 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
+ 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
+ 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
+};
+
+float __tandf(double x, int odd)
+{
+ double_t z,r,w,s,t,u;
+
+ z = x*x;
+ /*
+ * Split up the polynomial into small independent terms to give
+ * opportunities for parallel evaluation. The chosen splitting is
+ * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
+ * relative to Horner's method on sequential machines.
+ *
+ * We add the small terms from lowest degree up for efficiency on
+ * non-sequential machines (the lowest degree terms tend to be ready
+ * earlier). Apart from this, we don't care about order of
+ * operations, and don't need to to care since we have precision to
+ * spare. However, the chosen splitting is good for accuracy too,
+ * and would give results as accurate as Horner's method if the
+ * small terms were added from highest degree down.
+ */
+ r = T[4] + z*T[5];
+ t = T[2] + z*T[3];
+ w = z*z;
+ s = z*x;
+ u = T[0] + z*T[1];
+ r = (x + s*u) + (s*w)*(t + w*r);
+ return odd ? -1.0/r : r;
+}