diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:00 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:32 -0500 |
commit | bd5969fc876a10b18613302db7087ef3c40f18e1 (patch) | |
tree | 7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/logl.c | |
parent | a95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff) |
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/logl.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/logl.c | 175 |
1 files changed, 175 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/logl.c b/lib/mlibc/options/ansi/musl-generic-math/logl.c new file mode 100644 index 0000000..5d53659 --- /dev/null +++ b/lib/mlibc/options/ansi/musl-generic-math/logl.c @@ -0,0 +1,175 @@ +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */ +/* + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ +/* + * Natural logarithm, long double precision + * + * + * SYNOPSIS: + * + * long double x, y, logl(); + * + * y = logl( x ); + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). + * + * Otherwise, setting z = 2(x-1)/(x+1), + * + * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z). + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20 + * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20 + * + * In the tests over the interval exp(+-10000), the logarithms + * of the random arguments were uniformly distributed over + * [-10000, +10000]. + */ + +#include "libm.h" + +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 +long double logl(long double x) +{ + return log(x); +} +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 +/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 2.32e-20 + */ +static const long double P[] = { + 4.5270000862445199635215E-5L, + 4.9854102823193375972212E-1L, + 6.5787325942061044846969E0L, + 2.9911919328553073277375E1L, + 6.0949667980987787057556E1L, + 5.7112963590585538103336E1L, + 2.0039553499201281259648E1L, +}; +static const long double Q[] = { +/* 1.0000000000000000000000E0,*/ + 1.5062909083469192043167E1L, + 8.3047565967967209469434E1L, + 2.2176239823732856465394E2L, + 3.0909872225312059774938E2L, + 2.1642788614495947685003E2L, + 6.0118660497603843919306E1L, +}; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 6.16e-22 + */ +static const long double R[4] = { + 1.9757429581415468984296E-3L, +-7.1990767473014147232598E-1L, + 1.0777257190312272158094E1L, +-3.5717684488096787370998E1L, +}; +static const long double S[4] = { +/* 1.00000000000000000000E0L,*/ +-2.6201045551331104417768E1L, + 1.9361891836232102174846E2L, +-4.2861221385716144629696E2L, +}; +static const long double C1 = 6.9314575195312500000000E-1L; +static const long double C2 = 1.4286068203094172321215E-6L; + +#define SQRTH 0.70710678118654752440L + +long double logl(long double x) +{ + long double y, z; + int e; + + if (isnan(x)) + return x; + if (x == INFINITY) + return x; + if (x <= 0.0) { + if (x == 0.0) + return -1/(x*x); /* -inf with divbyzero */ + return 0/0.0f; /* nan with invalid */ + } + + /* separate mantissa from exponent */ + /* Note, frexp is used so that denormal numbers + * will be handled properly. + */ + x = frexpl(x, &e); + + /* logarithm using log(x) = z + z**3 P(z)/Q(z), + * where z = 2(x-1)/(x+1) + */ + if (e > 2 || e < -2) { + if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ + e -= 1; + z = x - 0.5; + y = 0.5 * z + 0.5; + } else { /* 2 (x-1)/(x+1) */ + z = x - 0.5; + z -= 0.5; + y = 0.5 * x + 0.5; + } + x = z / y; + z = x*x; + z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); + z = z + e * C2; + z = z + x; + z = z + e * C1; + return z; + } + + /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ + if (x < SQRTH) { + e -= 1; + x = 2.0*x - 1.0; + } else { + x = x - 1.0; + } + z = x*x; + y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); + y = y + e * C2; + z = y - 0.5*z; + /* Note, the sum of above terms does not exceed x/4, + * so it contributes at most about 1/4 lsb to the error. + */ + z = z + x; + z = z + e * C1; /* This sum has an error of 1/2 lsb. */ + return z; +} +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 +// TODO: broken implementation to make things compile +long double logl(long double x) +{ + return log(x); +} +#endif |