aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/log2.c
diff options
context:
space:
mode:
authorIan Moffett <ian@osmora.org>2024-03-07 17:28:00 -0500
committerIan Moffett <ian@osmora.org>2024-03-07 17:28:32 -0500
commitbd5969fc876a10b18613302db7087ef3c40f18e1 (patch)
tree7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/log2.c
parenta95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff)
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/log2.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/log2.c122
1 files changed, 122 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/log2.c b/lib/mlibc/options/ansi/musl-generic-math/log2.c
new file mode 100644
index 0000000..0aafad4
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/log2.c
@@ -0,0 +1,122 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 2 logarithm of x. See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ * log2(x) = (f - f*f/2 + r)/log(2) + k
+ */
+
+#include <math.h>
+#include <stdint.h>
+
+static const double
+ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
+ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+double log2(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
+ uint32_t hx;
+ int k;
+
+ hx = u.i>>32;
+ k = 0;
+ if (hx < 0x00100000 || hx>>31) {
+ if (u.i<<1 == 0)
+ return -1/(x*x); /* log(+-0)=-inf */
+ if (hx>>31)
+ return (x-x)/0.0; /* log(-#) = NaN */
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= 0x1p54;
+ u.f = x;
+ hx = u.i>>32;
+ } else if (hx >= 0x7ff00000) {
+ return x;
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0)
+ return 0;
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (int)(hx>>20) - 0x3ff;
+ hx = (hx&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+ x = u.f;
+
+ f = x - 1.0;
+ hfsq = 0.5*f*f;
+ s = f/(2.0+f);
+ z = s*s;
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+
+ /*
+ * f-hfsq must (for args near 1) be evaluated in extra precision
+ * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
+ * This is fairly efficient since f-hfsq only depends on f, so can
+ * be evaluated in parallel with R. Not combining hfsq with R also
+ * keeps R small (though not as small as a true `lo' term would be),
+ * so that extra precision is not needed for terms involving R.
+ *
+ * Compiler bugs involving extra precision used to break Dekker's
+ * theorem for spitting f-hfsq as hi+lo, unless double_t was used
+ * or the multi-precision calculations were avoided when double_t
+ * has extra precision. These problems are now automatically
+ * avoided as a side effect of the optimization of combining the
+ * Dekker splitting step with the clear-low-bits step.
+ *
+ * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
+ * precision to avoid a very large cancellation when x is very near
+ * these values. Unlike the above cancellations, this problem is
+ * specific to base 2. It is strange that adding +-1 is so much
+ * harder than adding +-ln2 or +-log10_2.
+ *
+ * This uses Dekker's theorem to normalize y+val_hi, so the
+ * compiler bugs are back in some configurations, sigh. And I
+ * don't want to used double_t to avoid them, since that gives a
+ * pessimization and the support for avoiding the pessimization
+ * is not yet available.
+ *
+ * The multi-precision calculations for the multiplications are
+ * routine.
+ */
+
+ /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+ hi = f - hfsq;
+ u.f = hi;
+ u.i &= (uint64_t)-1<<32;
+ hi = u.f;
+ lo = f - hi - hfsq + s*(hfsq+R);
+
+ val_hi = hi*ivln2hi;
+ val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
+
+ /* spadd(val_hi, val_lo, y), except for not using double_t: */
+ y = k;
+ w = y + val_hi;
+ val_lo += (y - w) + val_hi;
+ val_hi = w;
+
+ return val_lo + val_hi;
+}