aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/j0f.c
diff options
context:
space:
mode:
authorIan Moffett <ian@osmora.org>2024-03-07 17:28:00 -0500
committerIan Moffett <ian@osmora.org>2024-03-07 17:28:32 -0500
commitbd5969fc876a10b18613302db7087ef3c40f18e1 (patch)
tree7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/j0f.c
parenta95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff)
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/j0f.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/j0f.c314
1 files changed, 314 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j0f.c b/lib/mlibc/options/ansi/musl-generic-math/j0f.c
new file mode 100644
index 0000000..fab554a
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/j0f.c
@@ -0,0 +1,314 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+static float pzerof(float), qzerof(float);
+
+static const float
+invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
+tpi = 6.3661974669e-01; /* 0x3f22f983 */
+
+static float common(uint32_t ix, float x, int y0)
+{
+ float z,s,c,ss,cc;
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ s = sinf(x);
+ c = cosf(x);
+ if (y0)
+ c = -c;
+ cc = s+c;
+ if (ix < 0x7f000000) {
+ ss = s-c;
+ z = -cosf(2*x);
+ if (s*c < 0)
+ cc = z/ss;
+ else
+ ss = z/cc;
+ if (ix < 0x58800000) {
+ if (y0)
+ ss = -ss;
+ cc = pzerof(x)*cc-qzerof(x)*ss;
+ }
+ }
+ return invsqrtpi*cc/sqrtf(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+static const float
+R02 = 1.5625000000e-02, /* 0x3c800000 */
+R03 = -1.8997929874e-04, /* 0xb947352e */
+R04 = 1.8295404516e-06, /* 0x35f58e88 */
+R05 = -4.6183270541e-09, /* 0xb19eaf3c */
+S01 = 1.5619102865e-02, /* 0x3c7fe744 */
+S02 = 1.1692678527e-04, /* 0x38f53697 */
+S03 = 5.1354652442e-07, /* 0x3509daa6 */
+S04 = 1.1661400734e-09; /* 0x30a045e8 */
+
+float j0f(float x)
+{
+ float z,r,s;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x7f800000)
+ return 1/(x*x);
+ x = fabsf(x);
+
+ if (ix >= 0x40000000) { /* |x| >= 2 */
+ /* large ulp error near zeros */
+ return common(ix, x, 0);
+ }
+ if (ix >= 0x3a000000) { /* |x| >= 2**-11 */
+ /* up to 4ulp error near 2 */
+ z = x*x;
+ r = z*(R02+z*(R03+z*(R04+z*R05)));
+ s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
+ return (1+x/2)*(1-x/2) + z*(r/s);
+ }
+ if (ix >= 0x21800000) /* |x| >= 2**-60 */
+ x = 0.25f*x*x;
+ return 1 - x;
+}
+
+static const float
+u00 = -7.3804296553e-02, /* 0xbd9726b5 */
+u01 = 1.7666645348e-01, /* 0x3e34e80d */
+u02 = -1.3818567619e-02, /* 0xbc626746 */
+u03 = 3.4745343146e-04, /* 0x39b62a69 */
+u04 = -3.8140706238e-06, /* 0xb67ff53c */
+u05 = 1.9559013964e-08, /* 0x32a802ba */
+u06 = -3.9820518410e-11, /* 0xae2f21eb */
+v01 = 1.2730483897e-02, /* 0x3c509385 */
+v02 = 7.6006865129e-05, /* 0x389f65e0 */
+v03 = 2.5915085189e-07, /* 0x348b216c */
+v04 = 4.4111031494e-10; /* 0x2ff280c2 */
+
+float y0f(float x)
+{
+ float z,u,v;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ if ((ix & 0x7fffffff) == 0)
+ return -1/0.0f;
+ if (ix>>31)
+ return 0/0.0f;
+ if (ix >= 0x7f800000)
+ return 1/x;
+ if (ix >= 0x40000000) { /* |x| >= 2.0 */
+ /* large ulp error near zeros */
+ return common(ix,x,1);
+ }
+ if (ix >= 0x39000000) { /* x >= 2**-13 */
+ /* large ulp error at x ~= 0.89 */
+ z = x*x;
+ u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+ v = 1+z*(v01+z*(v02+z*(v03+z*v04)));
+ return u/v + tpi*(j0f(x)*logf(x));
+ }
+ return u00 + tpi*logf(x);
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+};
+static const float pS8[5] = {
+ 1.1653436279e+02, /* 0x42e91198 */
+ 3.8337448730e+03, /* 0x456f9beb */
+ 4.0597855469e+04, /* 0x471e95db */
+ 1.1675296875e+05, /* 0x47e4087c */
+ 4.7627726562e+04, /* 0x473a0bba */
+};
+static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+};
+static const float pS5[5] = {
+ 6.0753936768e+01, /* 0x42730408 */
+ 1.0512523193e+03, /* 0x44836813 */
+ 5.9789707031e+03, /* 0x45bad7c4 */
+ 9.6254453125e+03, /* 0x461665c8 */
+ 2.4060581055e+03, /* 0x451660ee */
+};
+
+static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+};
+static const float pS3[5] = {
+ 3.5856033325e+01, /* 0x420f6c94 */
+ 3.6151397705e+02, /* 0x43b4c1ca */
+ 1.1936077881e+03, /* 0x44953373 */
+ 1.1279968262e+03, /* 0x448cffe6 */
+ 1.7358093262e+02, /* 0x432d94b8 */
+};
+
+static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+};
+static const float pS2[5] = {
+ 2.2220300674e+01, /* 0x41b1c32d */
+ 1.3620678711e+02, /* 0x430834f0 */
+ 2.7047027588e+02, /* 0x43873c32 */
+ 1.5387539673e+02, /* 0x4319e01a */
+ 1.4657617569e+01, /* 0x416a859a */
+};
+
+static float pzerof(float x)
+{
+ const float *p,*q;
+ float_t z,r,s;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = pR8; q = pS8;}
+ else if (ix >= 0x409173eb){p = pR5; q = pS5;}
+ else if (ix >= 0x4036d917){p = pR3; q = pS3;}
+ else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return 1.0f + r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ 7.3242187500e-02, /* 0x3d960000 */
+ 1.1768206596e+01, /* 0x413c4a93 */
+ 5.5767340088e+02, /* 0x440b6b19 */
+ 8.8591972656e+03, /* 0x460a6cca */
+ 3.7014625000e+04, /* 0x471096a0 */
+};
+static const float qS8[6] = {
+ 1.6377603149e+02, /* 0x4323c6aa */
+ 8.0983447266e+03, /* 0x45fd12c2 */
+ 1.4253829688e+05, /* 0x480b3293 */
+ 8.0330925000e+05, /* 0x49441ed4 */
+ 8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+};
+
+static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.8408595828e-11, /* 0x2da1ec79 */
+ 7.3242180049e-02, /* 0x3d95ffff */
+ 5.8356351852e+00, /* 0x40babd86 */
+ 1.3511157227e+02, /* 0x43071c90 */
+ 1.0272437744e+03, /* 0x448067cd */
+ 1.9899779053e+03, /* 0x44f8bf4b */
+};
+static const float qS5[6] = {
+ 8.2776611328e+01, /* 0x42a58da0 */
+ 2.0778142090e+03, /* 0x4501dd07 */
+ 1.8847289062e+04, /* 0x46933e94 */
+ 5.6751113281e+04, /* 0x475daf1d */
+ 3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+};
+
+static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.3774099900e-09, /* 0x3196681b */
+ 7.3241114616e-02, /* 0x3d95ff70 */
+ 3.3442313671e+00, /* 0x405607e3 */
+ 4.2621845245e+01, /* 0x422a7cc5 */
+ 1.7080809021e+02, /* 0x432acedf */
+ 1.6673394775e+02, /* 0x4326bbe4 */
+};
+static const float qS3[6] = {
+ 4.8758872986e+01, /* 0x42430916 */
+ 7.0968920898e+02, /* 0x44316c1c */
+ 3.7041481934e+03, /* 0x4567825f */
+ 6.4604252930e+03, /* 0x45c9e367 */
+ 2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+};
+
+static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.5044444979e-07, /* 0x342189db */
+ 7.3223426938e-02, /* 0x3d95f62a */
+ 1.9981917143e+00, /* 0x3fffc4bf */
+ 1.4495602608e+01, /* 0x4167edfd */
+ 3.1666231155e+01, /* 0x41fd5471 */
+ 1.6252708435e+01, /* 0x4182058c */
+};
+static const float qS2[6] = {
+ 3.0365585327e+01, /* 0x41f2ecb8 */
+ 2.6934811401e+02, /* 0x4386ac8f */
+ 8.4478375244e+02, /* 0x44533229 */
+ 8.8293585205e+02, /* 0x445cbbe5 */
+ 2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+};
+
+static float qzerof(float x)
+{
+ const float *p,*q;
+ float_t s,r,z;
+ uint32_t ix;
+
+ GET_FLOAT_WORD(ix, x);
+ ix &= 0x7fffffff;
+ if (ix >= 0x41000000){p = qR8; q = qS8;}
+ else if (ix >= 0x409173eb){p = qR5; q = qS5;}
+ else if (ix >= 0x4036d917){p = qR3; q = qS3;}
+ else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
+ z = 1.0f/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (-.125f + r/s)/x;
+}