diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:00 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:32 -0500 |
commit | bd5969fc876a10b18613302db7087ef3c40f18e1 (patch) | |
tree | 7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/j0f.c | |
parent | a95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff) |
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/j0f.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/j0f.c | 314 |
1 files changed, 314 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/j0f.c b/lib/mlibc/options/ansi/musl-generic-math/j0f.c new file mode 100644 index 0000000..fab554a --- /dev/null +++ b/lib/mlibc/options/ansi/musl-generic-math/j0f.c @@ -0,0 +1,314 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#define _GNU_SOURCE +#include "libm.h" + +static float pzerof(float), qzerof(float); + +static const float +invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */ +tpi = 6.3661974669e-01; /* 0x3f22f983 */ + +static float common(uint32_t ix, float x, int y0) +{ + float z,s,c,ss,cc; + /* + * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) + * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) + */ + s = sinf(x); + c = cosf(x); + if (y0) + c = -c; + cc = s+c; + if (ix < 0x7f000000) { + ss = s-c; + z = -cosf(2*x); + if (s*c < 0) + cc = z/ss; + else + ss = z/cc; + if (ix < 0x58800000) { + if (y0) + ss = -ss; + cc = pzerof(x)*cc-qzerof(x)*ss; + } + } + return invsqrtpi*cc/sqrtf(x); +} + +/* R0/S0 on [0, 2.00] */ +static const float +R02 = 1.5625000000e-02, /* 0x3c800000 */ +R03 = -1.8997929874e-04, /* 0xb947352e */ +R04 = 1.8295404516e-06, /* 0x35f58e88 */ +R05 = -4.6183270541e-09, /* 0xb19eaf3c */ +S01 = 1.5619102865e-02, /* 0x3c7fe744 */ +S02 = 1.1692678527e-04, /* 0x38f53697 */ +S03 = 5.1354652442e-07, /* 0x3509daa6 */ +S04 = 1.1661400734e-09; /* 0x30a045e8 */ + +float j0f(float x) +{ + float z,r,s; + uint32_t ix; + + GET_FLOAT_WORD(ix, x); + ix &= 0x7fffffff; + if (ix >= 0x7f800000) + return 1/(x*x); + x = fabsf(x); + + if (ix >= 0x40000000) { /* |x| >= 2 */ + /* large ulp error near zeros */ + return common(ix, x, 0); + } + if (ix >= 0x3a000000) { /* |x| >= 2**-11 */ + /* up to 4ulp error near 2 */ + z = x*x; + r = z*(R02+z*(R03+z*(R04+z*R05))); + s = 1+z*(S01+z*(S02+z*(S03+z*S04))); + return (1+x/2)*(1-x/2) + z*(r/s); + } + if (ix >= 0x21800000) /* |x| >= 2**-60 */ + x = 0.25f*x*x; + return 1 - x; +} + +static const float +u00 = -7.3804296553e-02, /* 0xbd9726b5 */ +u01 = 1.7666645348e-01, /* 0x3e34e80d */ +u02 = -1.3818567619e-02, /* 0xbc626746 */ +u03 = 3.4745343146e-04, /* 0x39b62a69 */ +u04 = -3.8140706238e-06, /* 0xb67ff53c */ +u05 = 1.9559013964e-08, /* 0x32a802ba */ +u06 = -3.9820518410e-11, /* 0xae2f21eb */ +v01 = 1.2730483897e-02, /* 0x3c509385 */ +v02 = 7.6006865129e-05, /* 0x389f65e0 */ +v03 = 2.5915085189e-07, /* 0x348b216c */ +v04 = 4.4111031494e-10; /* 0x2ff280c2 */ + +float y0f(float x) +{ + float z,u,v; + uint32_t ix; + + GET_FLOAT_WORD(ix, x); + if ((ix & 0x7fffffff) == 0) + return -1/0.0f; + if (ix>>31) + return 0/0.0f; + if (ix >= 0x7f800000) + return 1/x; + if (ix >= 0x40000000) { /* |x| >= 2.0 */ + /* large ulp error near zeros */ + return common(ix,x,1); + } + if (ix >= 0x39000000) { /* x >= 2**-13 */ + /* large ulp error at x ~= 0.89 */ + z = x*x; + u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); + v = 1+z*(v01+z*(v02+z*(v03+z*v04))); + return u/v + tpi*(j0f(x)*logf(x)); + } + return u00 + tpi*logf(x); +} + +/* The asymptotic expansions of pzero is + * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. + * For x >= 2, We approximate pzero by + * pzero(x) = 1 + (R/S) + * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 + * S = 1 + pS0*s^2 + ... + pS4*s^10 + * and + * | pzero(x)-1-R/S | <= 2 ** ( -60.26) + */ +static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + -7.0312500000e-02, /* 0xbd900000 */ + -8.0816707611e+00, /* 0xc1014e86 */ + -2.5706311035e+02, /* 0xc3808814 */ + -2.4852163086e+03, /* 0xc51b5376 */ + -5.2530439453e+03, /* 0xc5a4285a */ +}; +static const float pS8[5] = { + 1.1653436279e+02, /* 0x42e91198 */ + 3.8337448730e+03, /* 0x456f9beb */ + 4.0597855469e+04, /* 0x471e95db */ + 1.1675296875e+05, /* 0x47e4087c */ + 4.7627726562e+04, /* 0x473a0bba */ +}; +static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ + -1.1412546255e-11, /* 0xad48c58a */ + -7.0312492549e-02, /* 0xbd8fffff */ + -4.1596107483e+00, /* 0xc0851b88 */ + -6.7674766541e+01, /* 0xc287597b */ + -3.3123129272e+02, /* 0xc3a59d9b */ + -3.4643338013e+02, /* 0xc3ad3779 */ +}; +static const float pS5[5] = { + 6.0753936768e+01, /* 0x42730408 */ + 1.0512523193e+03, /* 0x44836813 */ + 5.9789707031e+03, /* 0x45bad7c4 */ + 9.6254453125e+03, /* 0x461665c8 */ + 2.4060581055e+03, /* 0x451660ee */ +}; + +static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + -2.5470459075e-09, /* 0xb12f081b */ + -7.0311963558e-02, /* 0xbd8fffb8 */ + -2.4090321064e+00, /* 0xc01a2d95 */ + -2.1965976715e+01, /* 0xc1afba52 */ + -5.8079170227e+01, /* 0xc2685112 */ + -3.1447946548e+01, /* 0xc1fb9565 */ +}; +static const float pS3[5] = { + 3.5856033325e+01, /* 0x420f6c94 */ + 3.6151397705e+02, /* 0x43b4c1ca */ + 1.1936077881e+03, /* 0x44953373 */ + 1.1279968262e+03, /* 0x448cffe6 */ + 1.7358093262e+02, /* 0x432d94b8 */ +}; + +static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ + -8.8753431271e-08, /* 0xb3be98b7 */ + -7.0303097367e-02, /* 0xbd8ffb12 */ + -1.4507384300e+00, /* 0xbfb9b1cc */ + -7.6356959343e+00, /* 0xc0f4579f */ + -1.1193166733e+01, /* 0xc1331736 */ + -3.2336456776e+00, /* 0xc04ef40d */ +}; +static const float pS2[5] = { + 2.2220300674e+01, /* 0x41b1c32d */ + 1.3620678711e+02, /* 0x430834f0 */ + 2.7047027588e+02, /* 0x43873c32 */ + 1.5387539673e+02, /* 0x4319e01a */ + 1.4657617569e+01, /* 0x416a859a */ +}; + +static float pzerof(float x) +{ + const float *p,*q; + float_t z,r,s; + uint32_t ix; + + GET_FLOAT_WORD(ix, x); + ix &= 0x7fffffff; + if (ix >= 0x41000000){p = pR8; q = pS8;} + else if (ix >= 0x409173eb){p = pR5; q = pS5;} + else if (ix >= 0x4036d917){p = pR3; q = pS3;} + else /*ix >= 0x40000000*/ {p = pR2; q = pS2;} + z = 1.0f/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); + return 1.0f + r/s; +} + + +/* For x >= 8, the asymptotic expansions of qzero is + * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. + * We approximate pzero by + * qzero(x) = s*(-1.25 + (R/S)) + * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 + * S = 1 + qS0*s^2 + ... + qS5*s^12 + * and + * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) + */ +static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + 7.3242187500e-02, /* 0x3d960000 */ + 1.1768206596e+01, /* 0x413c4a93 */ + 5.5767340088e+02, /* 0x440b6b19 */ + 8.8591972656e+03, /* 0x460a6cca */ + 3.7014625000e+04, /* 0x471096a0 */ +}; +static const float qS8[6] = { + 1.6377603149e+02, /* 0x4323c6aa */ + 8.0983447266e+03, /* 0x45fd12c2 */ + 1.4253829688e+05, /* 0x480b3293 */ + 8.0330925000e+05, /* 0x49441ed4 */ + 8.4050156250e+05, /* 0x494d3359 */ + -3.4389928125e+05, /* 0xc8a7eb69 */ +}; + +static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ + 1.8408595828e-11, /* 0x2da1ec79 */ + 7.3242180049e-02, /* 0x3d95ffff */ + 5.8356351852e+00, /* 0x40babd86 */ + 1.3511157227e+02, /* 0x43071c90 */ + 1.0272437744e+03, /* 0x448067cd */ + 1.9899779053e+03, /* 0x44f8bf4b */ +}; +static const float qS5[6] = { + 8.2776611328e+01, /* 0x42a58da0 */ + 2.0778142090e+03, /* 0x4501dd07 */ + 1.8847289062e+04, /* 0x46933e94 */ + 5.6751113281e+04, /* 0x475daf1d */ + 3.5976753906e+04, /* 0x470c88c1 */ + -5.3543427734e+03, /* 0xc5a752be */ +}; + +static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + 4.3774099900e-09, /* 0x3196681b */ + 7.3241114616e-02, /* 0x3d95ff70 */ + 3.3442313671e+00, /* 0x405607e3 */ + 4.2621845245e+01, /* 0x422a7cc5 */ + 1.7080809021e+02, /* 0x432acedf */ + 1.6673394775e+02, /* 0x4326bbe4 */ +}; +static const float qS3[6] = { + 4.8758872986e+01, /* 0x42430916 */ + 7.0968920898e+02, /* 0x44316c1c */ + 3.7041481934e+03, /* 0x4567825f */ + 6.4604252930e+03, /* 0x45c9e367 */ + 2.5163337402e+03, /* 0x451d4557 */ + -1.4924745178e+02, /* 0xc3153f59 */ +}; + +static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ + 1.5044444979e-07, /* 0x342189db */ + 7.3223426938e-02, /* 0x3d95f62a */ + 1.9981917143e+00, /* 0x3fffc4bf */ + 1.4495602608e+01, /* 0x4167edfd */ + 3.1666231155e+01, /* 0x41fd5471 */ + 1.6252708435e+01, /* 0x4182058c */ +}; +static const float qS2[6] = { + 3.0365585327e+01, /* 0x41f2ecb8 */ + 2.6934811401e+02, /* 0x4386ac8f */ + 8.4478375244e+02, /* 0x44533229 */ + 8.8293585205e+02, /* 0x445cbbe5 */ + 2.1266638184e+02, /* 0x4354aa98 */ + -5.3109550476e+00, /* 0xc0a9f358 */ +}; + +static float qzerof(float x) +{ + const float *p,*q; + float_t s,r,z; + uint32_t ix; + + GET_FLOAT_WORD(ix, x); + ix &= 0x7fffffff; + if (ix >= 0x41000000){p = qR8; q = qS8;} + else if (ix >= 0x409173eb){p = qR5; q = qS5;} + else if (ix >= 0x4036d917){p = qR3; q = qS3;} + else /*ix >= 0x40000000*/ {p = qR2; q = qS2;} + z = 1.0f/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); + return (-.125f + r/s)/x; +} |