diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:00 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:32 -0500 |
commit | bd5969fc876a10b18613302db7087ef3c40f18e1 (patch) | |
tree | 7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/fmal.c | |
parent | a95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff) |
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/fmal.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/fmal.c | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/fmal.c b/lib/mlibc/options/ansi/musl-generic-math/fmal.c new file mode 100644 index 0000000..4506aac --- /dev/null +++ b/lib/mlibc/options/ansi/musl-generic-math/fmal.c @@ -0,0 +1,293 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */ +/*- + * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG> + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + + +#include "libm.h" +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 +long double fmal(long double x, long double y, long double z) +{ + return fma(x, y, z); +} +#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 +#include <fenv.h> +#if LDBL_MANT_DIG == 64 +#define LASTBIT(u) (u.i.m & 1) +#define SPLIT (0x1p32L + 1) +#elif LDBL_MANT_DIG == 113 +#define LASTBIT(u) (u.i.lo & 1) +#define SPLIT (0x1p57L + 1) +#endif + +/* + * A struct dd represents a floating-point number with twice the precision + * of a long double. We maintain the invariant that "hi" stores the high-order + * bits of the result. + */ +struct dd { + long double hi; + long double lo; +}; + +/* + * Compute a+b exactly, returning the exact result in a struct dd. We assume + * that both a and b are finite, but make no assumptions about their relative + * magnitudes. + */ +static inline struct dd dd_add(long double a, long double b) +{ + struct dd ret; + long double s; + + ret.hi = a + b; + s = ret.hi - a; + ret.lo = (a - (ret.hi - s)) + (b - s); + return (ret); +} + +/* + * Compute a+b, with a small tweak: The least significant bit of the + * result is adjusted into a sticky bit summarizing all the bits that + * were lost to rounding. This adjustment negates the effects of double + * rounding when the result is added to another number with a higher + * exponent. For an explanation of round and sticky bits, see any reference + * on FPU design, e.g., + * + * J. Coonen. An Implementation Guide to a Proposed Standard for + * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980. + */ +static inline long double add_adjusted(long double a, long double b) +{ + struct dd sum; + union ldshape u; + + sum = dd_add(a, b); + if (sum.lo != 0) { + u.f = sum.hi; + if (!LASTBIT(u)) + sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); + } + return (sum.hi); +} + +/* + * Compute ldexp(a+b, scale) with a single rounding error. It is assumed + * that the result will be subnormal, and care is taken to ensure that + * double rounding does not occur. + */ +static inline long double add_and_denormalize(long double a, long double b, int scale) +{ + struct dd sum; + int bits_lost; + union ldshape u; + + sum = dd_add(a, b); + + /* + * If we are losing at least two bits of accuracy to denormalization, + * then the first lost bit becomes a round bit, and we adjust the + * lowest bit of sum.hi to make it a sticky bit summarizing all the + * bits in sum.lo. With the sticky bit adjusted, the hardware will + * break any ties in the correct direction. + * + * If we are losing only one bit to denormalization, however, we must + * break the ties manually. + */ + if (sum.lo != 0) { + u.f = sum.hi; + bits_lost = -u.i.se - scale + 1; + if ((bits_lost != 1) ^ LASTBIT(u)) + sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); + } + return scalbnl(sum.hi, scale); +} + +/* + * Compute a*b exactly, returning the exact result in a struct dd. We assume + * that both a and b are normalized, so no underflow or overflow will occur. + * The current rounding mode must be round-to-nearest. + */ +static inline struct dd dd_mul(long double a, long double b) +{ + struct dd ret; + long double ha, hb, la, lb, p, q; + + p = a * SPLIT; + ha = a - p; + ha += p; + la = a - ha; + + p = b * SPLIT; + hb = b - p; + hb += p; + lb = b - hb; + + p = ha * hb; + q = ha * lb + la * hb; + + ret.hi = p + q; + ret.lo = p - ret.hi + q + la * lb; + return (ret); +} + +/* + * Fused multiply-add: Compute x * y + z with a single rounding error. + * + * We use scaling to avoid overflow/underflow, along with the + * canonical precision-doubling technique adapted from: + * + * Dekker, T. A Floating-Point Technique for Extending the + * Available Precision. Numer. Math. 18, 224-242 (1971). + */ +long double fmal(long double x, long double y, long double z) +{ + #pragma STDC FENV_ACCESS ON + long double xs, ys, zs, adj; + struct dd xy, r; + int oround; + int ex, ey, ez; + int spread; + + /* + * Handle special cases. The order of operations and the particular + * return values here are crucial in handling special cases involving + * infinities, NaNs, overflows, and signed zeroes correctly. + */ + if (!isfinite(x) || !isfinite(y)) + return (x * y + z); + if (!isfinite(z)) + return (z); + if (x == 0.0 || y == 0.0) + return (x * y + z); + if (z == 0.0) + return (x * y); + + xs = frexpl(x, &ex); + ys = frexpl(y, &ey); + zs = frexpl(z, &ez); + oround = fegetround(); + spread = ex + ey - ez; + + /* + * If x * y and z are many orders of magnitude apart, the scaling + * will overflow, so we handle these cases specially. Rounding + * modes other than FE_TONEAREST are painful. + */ + if (spread < -LDBL_MANT_DIG) { +#ifdef FE_INEXACT + feraiseexcept(FE_INEXACT); +#endif +#ifdef FE_UNDERFLOW + if (!isnormal(z)) + feraiseexcept(FE_UNDERFLOW); +#endif + switch (oround) { + default: /* FE_TONEAREST */ + return (z); +#ifdef FE_TOWARDZERO + case FE_TOWARDZERO: + if (x > 0.0 ^ y < 0.0 ^ z < 0.0) + return (z); + else + return (nextafterl(z, 0)); +#endif +#ifdef FE_DOWNWARD + case FE_DOWNWARD: + if (x > 0.0 ^ y < 0.0) + return (z); + else + return (nextafterl(z, -INFINITY)); +#endif +#ifdef FE_UPWARD + case FE_UPWARD: + if (x > 0.0 ^ y < 0.0) + return (nextafterl(z, INFINITY)); + else + return (z); +#endif + } + } + if (spread <= LDBL_MANT_DIG * 2) + zs = scalbnl(zs, -spread); + else + zs = copysignl(LDBL_MIN, zs); + + fesetround(FE_TONEAREST); + + /* + * Basic approach for round-to-nearest: + * + * (xy.hi, xy.lo) = x * y (exact) + * (r.hi, r.lo) = xy.hi + z (exact) + * adj = xy.lo + r.lo (inexact; low bit is sticky) + * result = r.hi + adj (correctly rounded) + */ + xy = dd_mul(xs, ys); + r = dd_add(xy.hi, zs); + + spread = ex + ey; + + if (r.hi == 0.0) { + /* + * When the addends cancel to 0, ensure that the result has + * the correct sign. + */ + fesetround(oround); + volatile long double vzs = zs; /* XXX gcc CSE bug workaround */ + return xy.hi + vzs + scalbnl(xy.lo, spread); + } + + if (oround != FE_TONEAREST) { + /* + * There is no need to worry about double rounding in directed + * rounding modes. + * But underflow may not be raised correctly, example in downward rounding: + * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L) + */ + long double ret; +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW) + int e = fetestexcept(FE_INEXACT); + feclearexcept(FE_INEXACT); +#endif + fesetround(oround); + adj = r.lo + xy.lo; + ret = scalbnl(r.hi + adj, spread); +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW) + if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT)) + feraiseexcept(FE_UNDERFLOW); + else if (e) + feraiseexcept(FE_INEXACT); +#endif + return ret; + } + + adj = add_adjusted(r.lo, xy.lo); + if (spread + ilogbl(r.hi) > -16383) + return scalbnl(r.hi + adj, spread); + else + return add_and_denormalize(r.hi, adj, spread); +} +#endif |