diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:52 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 18:24:51 -0500 |
commit | f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 (patch) | |
tree | 93b156621dc0303816b37f60ba88051b702d92f6 /lib/mlibc/options/ansi/musl-generic-math/expm1l.c | |
parent | bd5969fc876a10b18613302db7087ef3c40f18e1 (diff) |
build: Build mlibc + add distclean target
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/expm1l.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/expm1l.c | 123 |
1 files changed, 0 insertions, 123 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1l.c b/lib/mlibc/options/ansi/musl-generic-math/expm1l.c deleted file mode 100644 index d171507..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/expm1l.c +++ /dev/null @@ -1,123 +0,0 @@ -/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */ -/* - * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> - * - * Permission to use, copy, modify, and distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ -/* - * Exponential function, minus 1 - * Long double precision - * - * - * SYNOPSIS: - * - * long double x, y, expm1l(); - * - * y = expm1l( x ); - * - * - * DESCRIPTION: - * - * Returns e (2.71828...) raised to the x power, minus 1. - * - * Range reduction is accomplished by separating the argument - * into an integer k and fraction f such that - * - * x k f - * e = 2 e. - * - * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 - * in the basic range [-0.5 ln 2, 0.5 ln 2]. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20 - */ - -#include "libm.h" - -#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 -long double expm1l(long double x) -{ - return expm1(x); -} -#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 - -/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) - -.5 ln 2 < x < .5 ln 2 - Theoretical peak relative error = 3.4e-22 */ -static const long double -P0 = -1.586135578666346600772998894928250240826E4L, -P1 = 2.642771505685952966904660652518429479531E3L, -P2 = -3.423199068835684263987132888286791620673E2L, -P3 = 1.800826371455042224581246202420972737840E1L, -P4 = -5.238523121205561042771939008061958820811E-1L, -Q0 = -9.516813471998079611319047060563358064497E4L, -Q1 = 3.964866271411091674556850458227710004570E4L, -Q2 = -7.207678383830091850230366618190187434796E3L, -Q3 = 7.206038318724600171970199625081491823079E2L, -Q4 = -4.002027679107076077238836622982900945173E1L, -/* Q5 = 1.000000000000000000000000000000000000000E0 */ -/* C1 + C2 = ln 2 */ -C1 = 6.93145751953125E-1L, -C2 = 1.428606820309417232121458176568075500134E-6L, -/* ln 2^-65 */ -minarg = -4.5054566736396445112120088E1L, -/* ln 2^16384 */ -maxarg = 1.1356523406294143949492E4L; - -long double expm1l(long double x) -{ - long double px, qx, xx; - int k; - - if (isnan(x)) - return x; - if (x > maxarg) - return x*0x1p16383L; /* overflow, unless x==inf */ - if (x == 0.0) - return x; - if (x < minarg) - return -1.0; - - xx = C1 + C2; - /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ - px = floorl(0.5 + x / xx); - k = px; - /* remainder times ln 2 */ - x -= px * C1; - x -= px * C2; - - /* Approximate exp(remainder ln 2).*/ - px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x; - qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; - xx = x * x; - qx = x + (0.5 * xx + xx * px / qx); - - /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). - We have qx = exp(remainder ln 2) - 1, so - exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ - px = scalbnl(1.0, k); - x = px * qx + (px - 1.0); - return x; -} -#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 -// TODO: broken implementation to make things compile -long double expm1l(long double x) -{ - return expm1(x); -} -#endif |