aboutsummaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/expm1l.c
diff options
context:
space:
mode:
authorIan Moffett <ian@osmora.org>2024-03-07 17:28:52 -0500
committerIan Moffett <ian@osmora.org>2024-03-07 18:24:51 -0500
commitf5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 (patch)
tree93b156621dc0303816b37f60ba88051b702d92f6 /lib/mlibc/options/ansi/musl-generic-math/expm1l.c
parentbd5969fc876a10b18613302db7087ef3c40f18e1 (diff)
build: Build mlibc + add distclean target
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/expm1l.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/expm1l.c123
1 files changed, 0 insertions, 123 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/expm1l.c b/lib/mlibc/options/ansi/musl-generic-math/expm1l.c
deleted file mode 100644
index d171507..0000000
--- a/lib/mlibc/options/ansi/musl-generic-math/expm1l.c
+++ /dev/null
@@ -1,123 +0,0 @@
-/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */
-/*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-/*
- * Exponential function, minus 1
- * Long double precision
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, expm1l();
- *
- * y = expm1l( x );
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power, minus 1.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
- * in the basic range [-0.5 ln 2, 0.5 ln 2].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20
- */
-
-#include "libm.h"
-
-#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double expm1l(long double x)
-{
- return expm1(x);
-}
-#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-
-/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
- -.5 ln 2 < x < .5 ln 2
- Theoretical peak relative error = 3.4e-22 */
-static const long double
-P0 = -1.586135578666346600772998894928250240826E4L,
-P1 = 2.642771505685952966904660652518429479531E3L,
-P2 = -3.423199068835684263987132888286791620673E2L,
-P3 = 1.800826371455042224581246202420972737840E1L,
-P4 = -5.238523121205561042771939008061958820811E-1L,
-Q0 = -9.516813471998079611319047060563358064497E4L,
-Q1 = 3.964866271411091674556850458227710004570E4L,
-Q2 = -7.207678383830091850230366618190187434796E3L,
-Q3 = 7.206038318724600171970199625081491823079E2L,
-Q4 = -4.002027679107076077238836622982900945173E1L,
-/* Q5 = 1.000000000000000000000000000000000000000E0 */
-/* C1 + C2 = ln 2 */
-C1 = 6.93145751953125E-1L,
-C2 = 1.428606820309417232121458176568075500134E-6L,
-/* ln 2^-65 */
-minarg = -4.5054566736396445112120088E1L,
-/* ln 2^16384 */
-maxarg = 1.1356523406294143949492E4L;
-
-long double expm1l(long double x)
-{
- long double px, qx, xx;
- int k;
-
- if (isnan(x))
- return x;
- if (x > maxarg)
- return x*0x1p16383L; /* overflow, unless x==inf */
- if (x == 0.0)
- return x;
- if (x < minarg)
- return -1.0;
-
- xx = C1 + C2;
- /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
- px = floorl(0.5 + x / xx);
- k = px;
- /* remainder times ln 2 */
- x -= px * C1;
- x -= px * C2;
-
- /* Approximate exp(remainder ln 2).*/
- px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
- qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
- xx = x * x;
- qx = x + (0.5 * xx + xx * px / qx);
-
- /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
- We have qx = exp(remainder ln 2) - 1, so
- exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
- px = scalbnl(1.0, k);
- x = px * qx + (px - 1.0);
- return x;
-}
-#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-// TODO: broken implementation to make things compile
-long double expm1l(long double x)
-{
- return expm1(x);
-}
-#endif