diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:52 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 18:24:51 -0500 |
commit | f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 (patch) | |
tree | 93b156621dc0303816b37f60ba88051b702d92f6 /lib/mlibc/options/ansi/musl-generic-math/cbrtl.c | |
parent | bd5969fc876a10b18613302db7087ef3c40f18e1 (diff) |
build: Build mlibc + add distclean target
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/cbrtl.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/cbrtl.c | 124 |
1 files changed, 0 insertions, 124 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c b/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c deleted file mode 100644 index ceff913..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/cbrtl.c +++ /dev/null @@ -1,124 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtl.c */ -/*- - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - * The argument reduction and testing for exceptional cases was - * written by Steven G. Kargl with input from Bruce D. Evans - * and David A. Schultz. - */ - -#include "libm.h" - -#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 -long double cbrtl(long double x) -{ - return cbrt(x); -} -#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 -static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ - -long double cbrtl(long double x) -{ - union ldshape u = {x}, v; - union {float f; uint32_t i;} uft; - long double r, s, t, w; - double_t dr, dt, dx; - float_t ft; - int e = u.i.se & 0x7fff; - int sign = u.i.se & 0x8000; - - /* - * If x = +-Inf, then cbrt(x) = +-Inf. - * If x = NaN, then cbrt(x) = NaN. - */ - if (e == 0x7fff) - return x + x; - if (e == 0) { - /* Adjust subnormal numbers. */ - u.f *= 0x1p120; - e = u.i.se & 0x7fff; - /* If x = +-0, then cbrt(x) = +-0. */ - if (e == 0) - return x; - e -= 120; - } - e -= 0x3fff; - u.i.se = 0x3fff; - x = u.f; - switch (e % 3) { - case 1: - case -2: - x *= 2; - e--; - break; - case 2: - case -1: - x *= 4; - e -= 2; - break; - } - v.f = 1.0; - v.i.se = sign | (0x3fff + e/3); - - /* - * The following is the guts of s_cbrtf, with the handling of - * special values removed and extra care for accuracy not taken, - * but with most of the extra accuracy not discarded. - */ - - /* ~5-bit estimate: */ - uft.f = x; - uft.i = (uft.i & 0x7fffffff)/3 + B1; - ft = uft.f; - - /* ~16-bit estimate: */ - dx = x; - dt = ft; - dr = dt * dt * dt; - dt = dt * (dx + dx + dr) / (dx + dr + dr); - - /* ~47-bit estimate: */ - dr = dt * dt * dt; - dt = dt * (dx + dx + dr) / (dx + dr + dr); - -#if LDBL_MANT_DIG == 64 - /* - * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8). - * Round it away from zero to 32 bits (32 so that t*t is exact, and - * away from zero for technical reasons). - */ - t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32; -#elif LDBL_MANT_DIG == 113 - /* - * Round dt away from zero to 47 bits. Since we don't trust the 47, - * add 2 47-bit ulps instead of 1 to round up. Rounding is slow and - * might be avoidable in this case, since on most machines dt will - * have been evaluated in 53-bit precision and the technical reasons - * for rounding up might not apply to either case in cbrtl() since - * dt is much more accurate than needed. - */ - t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60; -#endif - - /* - * Final step Newton iteration to 64 or 113 bits with - * error < 0.667 ulps - */ - s = t*t; /* t*t is exact */ - r = x/s; /* error <= 0.5 ulps; |r| < |t| */ - w = t+t; /* t+t is exact */ - r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ - t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ - - t *= v.f; - return t; -} -#endif |