diff options
author | Ian Moffett <ian@osmora.org> | 2024-03-07 17:28:52 -0500 |
---|---|---|
committer | Ian Moffett <ian@osmora.org> | 2024-03-07 18:24:51 -0500 |
commit | f5e48e94a2f4d4bbd6e5628c7f2afafc6dbcc459 (patch) | |
tree | 93b156621dc0303816b37f60ba88051b702d92f6 /lib/mlibc/options/ansi/musl-generic-math/atanl.c | |
parent | bd5969fc876a10b18613302db7087ef3c40f18e1 (diff) |
build: Build mlibc + add distclean target
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/atanl.c')
-rw-r--r-- | lib/mlibc/options/ansi/musl-generic-math/atanl.c | 184 |
1 files changed, 0 insertions, 184 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/atanl.c b/lib/mlibc/options/ansi/musl-generic-math/atanl.c deleted file mode 100644 index 79a3edb..0000000 --- a/lib/mlibc/options/ansi/musl-generic-math/atanl.c +++ /dev/null @@ -1,184 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * See comments in atan.c. - * Converted to long double by David Schultz <das@FreeBSD.ORG>. - */ - -#include "libm.h" - -#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 -long double atanl(long double x) -{ - return atan(x); -} -#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 - -#if LDBL_MANT_DIG == 64 -#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff)) - -static const long double atanhi[] = { - 4.63647609000806116202e-01L, - 7.85398163397448309628e-01L, - 9.82793723247329067960e-01L, - 1.57079632679489661926e+00L, -}; - -static const long double atanlo[] = { - 1.18469937025062860669e-20L, - -1.25413940316708300586e-20L, - 2.55232234165405176172e-20L, - -2.50827880633416601173e-20L, -}; - -static const long double aT[] = { - 3.33333333333333333017e-01L, - -1.99999999999999632011e-01L, - 1.42857142857046531280e-01L, - -1.11111111100562372733e-01L, - 9.09090902935647302252e-02L, - -7.69230552476207730353e-02L, - 6.66661718042406260546e-02L, - -5.88158892835030888692e-02L, - 5.25499891539726639379e-02L, - -4.70119845393155721494e-02L, - 4.03539201366454414072e-02L, - -2.91303858419364158725e-02L, - 1.24822046299269234080e-02L, -}; - -static long double T_even(long double x) -{ - return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + - x * (aT[8] + x * (aT[10] + x * aT[12]))))); -} - -static long double T_odd(long double x) -{ - return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + - x * (aT[9] + x * aT[11])))); -} -#elif LDBL_MANT_DIG == 113 -#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8) - -const long double atanhi[] = { - 4.63647609000806116214256231461214397e-01L, - 7.85398163397448309615660845819875699e-01L, - 9.82793723247329067985710611014666038e-01L, - 1.57079632679489661923132169163975140e+00L, -}; - -const long double atanlo[] = { - 4.89509642257333492668618435220297706e-36L, - 2.16795253253094525619926100651083806e-35L, - -2.31288434538183565909319952098066272e-35L, - 4.33590506506189051239852201302167613e-35L, -}; - -const long double aT[] = { - 3.33333333333333333333333333333333125e-01L, - -1.99999999999999999999999999999180430e-01L, - 1.42857142857142857142857142125269827e-01L, - -1.11111111111111111111110834490810169e-01L, - 9.09090909090909090908522355708623681e-02L, - -7.69230769230769230696553844935357021e-02L, - 6.66666666666666660390096773046256096e-02L, - -5.88235294117646671706582985209643694e-02L, - 5.26315789473666478515847092020327506e-02L, - -4.76190476189855517021024424991436144e-02L, - 4.34782608678695085948531993458097026e-02L, - -3.99999999632663469330634215991142368e-02L, - 3.70370363987423702891250829918659723e-02L, - -3.44827496515048090726669907612335954e-02L, - 3.22579620681420149871973710852268528e-02L, - -3.03020767654269261041647570626778067e-02L, - 2.85641979882534783223403715930946138e-02L, - -2.69824879726738568189929461383741323e-02L, - 2.54194698498808542954187110873675769e-02L, - -2.35083879708189059926183138130183215e-02L, - 2.04832358998165364349957325067131428e-02L, - -1.54489555488544397858507248612362957e-02L, - 8.64492360989278761493037861575248038e-03L, - -2.58521121597609872727919154569765469e-03L, -}; - -static long double T_even(long double x) -{ - return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] + - x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] + - x * (aT[18] + x * (aT[20] + x * aT[22]))))))))))); -} - -static long double T_odd(long double x) -{ - return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] + - x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] + - x * (aT[19] + x * (aT[21] + x * aT[23]))))))))))); -} -#endif - -long double atanl(long double x) -{ - union ldshape u = {x}; - long double w, s1, s2, z; - int id; - unsigned e = u.i.se & 0x7fff; - unsigned sign = u.i.se >> 15; - unsigned expman; - - if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */ - if (isnan(x)) - return x; - return sign ? -atanhi[3] : atanhi[3]; - } - /* Extract the exponent and the first few bits of the mantissa. */ - expman = EXPMAN(u); - if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */ - if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) { /* if |x| is small, atanl(x)~=x */ - /* raise underflow if subnormal */ - if (e == 0) - FORCE_EVAL((float)x); - return x; - } - id = -1; - } else { - x = fabsl(x); - if (expman < (0x3fff << 8) + 0x30) { /* |x| < 1.1875 */ - if (expman < ((0x3fff - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */ - id = 0; - x = (2.0*x-1.0)/(2.0+x); - } else { /* 11/16 <= |x| < 19/16 */ - id = 1; - x = (x-1.0)/(x+1.0); - } - } else { - if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */ - id = 2; - x = (x-1.5)/(1.0+1.5*x); - } else { /* 2.4375 <= |x| */ - id = 3; - x = -1.0/x; - } - } - } - /* end of argument reduction */ - z = x*x; - w = z*z; - /* break sum aT[i]z**(i+1) into odd and even poly */ - s1 = z*T_even(w); - s2 = w*T_odd(w); - if (id < 0) - return x - x*(s1+s2); - z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); - return sign ? -z : z; -} -#endif |