summaryrefslogtreecommitdiff
path: root/lib/mlibc/options/ansi/musl-generic-math/__tan.c
diff options
context:
space:
mode:
authorIan Moffett <ian@osmora.org>2024-03-07 17:28:00 -0500
committerIan Moffett <ian@osmora.org>2024-03-07 17:28:32 -0500
commitbd5969fc876a10b18613302db7087ef3c40f18e1 (patch)
tree7c2b8619afe902abf99570df2873fbdf40a4d1a1 /lib/mlibc/options/ansi/musl-generic-math/__tan.c
parenta95b38b1b92b172e6cc4e8e56a88a30cc65907b0 (diff)
lib: Add mlibc
Signed-off-by: Ian Moffett <ian@osmora.org>
Diffstat (limited to 'lib/mlibc/options/ansi/musl-generic-math/__tan.c')
-rw-r--r--lib/mlibc/options/ansi/musl-generic-math/__tan.c110
1 files changed, 110 insertions, 0 deletions
diff --git a/lib/mlibc/options/ansi/musl-generic-math/__tan.c b/lib/mlibc/options/ansi/musl-generic-math/__tan.c
new file mode 100644
index 0000000..8019844
--- /dev/null
+++ b/lib/mlibc/options/ansi/musl-generic-math/__tan.c
@@ -0,0 +1,110 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* __tan( x, y, k )
+ * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
+ *
+ * Algorithm
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 2. Callers must return tan(-0) = -0 without calling here since our
+ * odd polynomial is not evaluated in a way that preserves -0.
+ * Callers may do the optimization tan(x) ~ x for tiny x.
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on
+ * [0,0.67434]
+ * 3 27
+ * tan(x) ~ x + T1*x + ... + T13*x
+ * where
+ *
+ * |tan(x) 2 4 26 | -59.2
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+ * | x |
+ *
+ * Note: tan(x+y) = tan(x) + tan'(x)*y
+ * ~ tan(x) + (1+x*x)*y
+ * Therefore, for better accuracy in computing tan(x+y), let
+ * 3 2 2 2 2
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ * then
+ * 3 2
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include "libm.h"
+
+static const double T[] = {
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+},
+pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
+pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
+
+double __tan(double x, double y, int odd)
+{
+ double_t z, r, v, w, s, a;
+ double w0, a0;
+ uint32_t hx;
+ int big, sign;
+
+ GET_HIGH_WORD(hx,x);
+ big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
+ if (big) {
+ sign = hx>>31;
+ if (sign) {
+ x = -x;
+ y = -y;
+ }
+ x = (pio4 - x) + (pio4lo - y);
+ y = 0.0;
+ }
+ z = x * x;
+ w = z * z;
+ /*
+ * Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
+ v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
+ s = z * x;
+ r = y + z*(s*(r + v) + y) + s*T[0];
+ w = x + r;
+ if (big) {
+ s = 1 - 2*odd;
+ v = s - 2.0 * (x + (r - w*w/(w + s)));
+ return sign ? -v : v;
+ }
+ if (!odd)
+ return w;
+ /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
+ w0 = w;
+ SET_LOW_WORD(w0, 0);
+ v = r - (w0 - x); /* w0+v = r+x */
+ a0 = a = -1.0 / w;
+ SET_LOW_WORD(a0, 0);
+ return a0 + a*(1.0 + a0*w0 + a0*v);
+}